Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628355

RESUMO

An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.

2.
Pest Manag Sci ; 80(9): 4450-4458, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38662600

RESUMO

BACKGROUND: Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS: The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 µg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 µg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 µg mL-1, which was superior to that of NNM (276.4 µg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION: Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.


Assuntos
Antivirais , Potyvirus , Tioureia , Tioureia/farmacologia , Tioureia/análogos & derivados , Tioureia/química , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Potyvirus/efeitos dos fármacos , Simulação de Acoplamento Molecular , Desenho de Fármacos , Estereoisomerismo
3.
Org Lett ; 26(8): 1584-1588, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377184

RESUMO

We have developed a catalytic method using chiral N-heterocyclic carbene (NHC) as the sole organic catalyst to synthesize planar chiral carbonitriles asymmetrically, resulting in optically pure, multifunctional compounds. The method demonstrates remarkable tolerance toward diverse substituents and substitution patterns through kinetic resolution (KR) or desymmetrization processes. The resulting optically pure planar chiral products hold significant potential for applications in asymmetric synthesis and antibacterial pesticide development.

4.
J Agric Food Chem ; 72(13): 6979-6987, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520352

RESUMO

Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 µg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 µg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.


Assuntos
Potyvirus , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Indóis/farmacologia , Desenho de Fármacos
5.
J Agric Food Chem ; 71(3): 1291-1309, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625507

RESUMO

Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.


Assuntos
Antivirais , Vírus de Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa