Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779755

RESUMO

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Assuntos
Diabetes Mellitus Experimental , Canais Epiteliais de Sódio , Potássio na Dieta , Potássio , Animais , Diabetes Mellitus Experimental/metabolismo , Potássio/metabolismo , Potássio/urina , Masculino , Potássio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Camundongos Endogâmicos C57BL , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Hipopotassemia/metabolismo , Amilorida/farmacologia , Eliminação Renal/efeitos dos fármacos , Homeostase , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Glucosídeos/farmacologia , Estreptozocina , Compostos Benzidrílicos , Transportador 2 de Glucose-Sódio
2.
Zool Res ; 45(2): 355-366, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485505

RESUMO

Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males. However, the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood, especially in teleosts. In this study, cyp17a1-/- zebrafish ( Danio rerio) exhibited excessive visceral adipose tissue (VAT), lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis (DNL) enzymes. The assay for transposase accessible chromatin with sequencing (ATAC-seq) results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/- fish compared to cyp17a1+/+ male fish, including stearoyl-CoA desaturase ( scd) and fatty acid synthase ( fasn). Androgen response element (ARE) motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+ male fish but not in cyp17a1-/- fish. Both androgen receptor ( ar)-/- and wild-type (WT) zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue, lipid content, and up-regulated expression and activity of hepatic de novo lipogenesis enzymes. The Ar agonist BMS-564929 reduced the content of VAT and lipid content, and down-regulated acetyl-CoA carboxylase a ( acaca), fasn, and scd expression. Mechanistically, the rescue effect of testosterone on cyp17a1-/- fish in terms of phenotypes was abolished when ar was additionally depleted. Collectively, these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish, thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts.


Assuntos
Androgênios , Lipogênese , Masculino , Animais , Androgênios/farmacologia , Lipogênese/genética , Peixe-Zebra/genética , Testosterona , Lipídeos , Transdução de Sinais , Cromatina
3.
J Hypertens ; 42(9): 1632-1640, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780161

RESUMO

OBJECTIVES: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K + -induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. METHODS: In this study, we examined the impact of high-K + intake on renal Na + /K + transport by determining the expression of major apical Na + transporters, diuretics responses (as a proxy for specific Na + transporter function), urinary Na + /K + excretion, and plasma Na + /K + concentrations in db/db mice, a model of type 2 diabetes mellitus. RESULTS: Although db/m mice exhibited increased fractional excretion of sodium (FE Na ) and fractional excretion of potassium (FE K ) under high-K + intake, these responses were largely blunted in db/db mice, suggesting impaired K + -induced natriuresis and kaliuresis in diabetes. Consequently, high-K + intake increased plasma K + levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na + channel (ENaC), as high-K + intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K + diet, indicating a key role for NCC in K + -loaded diabetic mice. Treatment with metformin enhanced urinary Na + /K + excretion and normalized plasma K + levels in db/db mice with a high-K + diet, at least partially, by suppressing NCC activity. CONCLUSION: Collectively, the impaired K + -induced natriuresis in diabetic mice under high-K + intake may be primarily attributed to impaired NCC-mediated renal K + excretion, despite the role of NHE3.


Assuntos
Hiperpotassemia , Natriurese , Potássio , Trocador 3 de Sódio-Hidrogênio , Animais , Natriurese/efeitos dos fármacos , Camundongos , Potássio/urina , Potássio/sangue , Potássio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Masculino , Diabetes Mellitus Tipo 2/complicações , Suplementos Nutricionais
4.
Acta Physiol (Oxf) ; 238(2): e13948, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36764674

RESUMO

AIM: Cyclosporin A (CsA) is a widely used immunosuppressive drug that causes hypertension and hyperkalemia. Moreover, CsA-induced stimulation of the thiazide-sensitive NaCl cotransporter (NCC) in the kidney has been shown to be responsible for the development of hyperkalemic hypertension. In this study, we tested whether CsA induces the activation of NCC by stimulating the basolateral Kir4.1/Kir5.1 channel in the distal convoluted tubule (DCT). METHODS: Electrophysiology, immunoblotting, metabolic cages, and radio-telemetry methods were used to examine the effects of CsA on Kir4.1/Kir5.1 activity in the DCT, NCC function, and blood pressure in wild-type (WT) and kidney-specific Kir4.1 knockout (KS-Kir4.1 KO) mice. RESULTS: The single-channel patch clamp experiment demonstrated that CsA stimulated the basolateral 40 pS K+ channel in the DCT. Whole-cell recording showed that short-term CsA administration (2 h) not only increased DCT K+ currents but also shifted the K+ current (IK ) reversal potential to the negative range (hyperpolarization). Furthermore, CsA administration increased phosphorylated NCC (pNCC) levels and inhibited renal Na+ and K+ excretions in WT mice but not in KS-Kir4.1 KO mice, suggesting that Kir4.1 is required to mediate CsA effects on NCC function. Finally, long-term CsA infusion (14 days) increased blood pressure, plasma K+ concentration, and total NCC or pNCC abundance in WT mice, but these effects were blunted in KS-Kir4.1 KO mice. CONCLUSION: We conclude that CsA stimulates basolateral K+ channel activity in the DCT and that Kir4.1 is essential for CsA-induced NCC activation and hyperkalemic hypertension.


Assuntos
Hiperpotassemia , Hipertensão , Animais , Camundongos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Hiperpotassemia/metabolismo , Ciclosporina/farmacologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Camundongos Knockout , Túbulos Renais Distais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo
5.
J Hypertens ; 41(6): 958-970, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37016934

RESUMO

OBJECTIVES: Functional impairment of renal sodium handling and blood pressure (BP) homeostasis is an early characteristic manifestation of type 1 diabetes. However, the underlying mechanisms remain unclear. METHODS: Metabolic cages, radio-telemetry, immunoblotting, and electrophysiology were utilized to examine effects of high salt (8% NaCl, HS) intake on Na + /K + balance, BP, Na + -Cl - cotransporter (NCC) function, and basolateral K + channel activity in the distal convoluted tubule (DCT) under diabetic conditions. RESULTS: Improper Na + balance, hypernatremia, and a mild but significant increase in BP were found in streptozotocin (STZ)-induced diabetic mice in response to HS intake for 7 days. Compared to the vehicle, STZ mice showed increased Kir4.1 expression and activity in the DCT, a more negative membrane potential, higher NCC abundance, and enhanced hydrochlorothiazide-induced natriuretic effect. However, HS had no significant effect on basolateral Kir4.1 expression/activity and DCT membrane potential, or NCC activity under diabetic conditions, despite a downregulation in phosphorylated NCC abundance. In contrast, HS significantly downregulated the expression of Na + -H + exchanger 3 (NHE3) and cleaved epithelial sodium channel-γ in STZ mice, despite an increase in NHE3 abundance after STZ treatment. Kir4.1 deletion largely abolished STZ-induced upregulation of NCC expression and prevented BP elevation during HS intake. Interestingly, HS causes severe hypokalemia in STZ-treated kidney-specific Kir4.1 knockout (Ks-Kir4.1 KO) mice and lead to death within a few days, which could be attributed to a higher circulating aldosterone level. CONCLUSIONS: We concluded that Kir4.1 is required for upregulating NCC activity and may be essential for developing salt-sensitive hypertension in early STZ-induced diabetes.


Assuntos
Diabetes Mellitus Experimental , Hipertensão , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia
6.
World J Emerg Med ; 12(4): 309-316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512829

RESUMO

BACKGROUND: Our group previously reported that right-sided vagus nerve stimulation (RVNS) significantly improved outcomes after cardiopulmonary resuscitation (CPR) in a rat model of cardiac arrest (CA). However, whether left-sided vagus nerve stimulation (LVNS) could achieve the same effect as RVNS in CPR outcomes remains unknown. METHODS: A rat model of CA was established using modified percutaneous epicardial electrical stimulation to induce ventricular fibrillation (VF). Rats were treated with LVNS or RVNS for 30 minutes before the induction of VF. All animals were observed closely within 72 hours after return of spontaneous circulation (ROSC), and their health and behavior were evaluated every 24 hours. RESULTS: Compared with those in the RVNS group, the hemodynamic measurements in the LVNS group decreased more notably. Vagus nerve stimulation (VNS) decreased the serum levels of tumor necrosis factor-alpha (TNF-α) and the arrhythmia score, and attenuated inflammatory infiltration in myocardial tissue after ROSC, regardless of the side of stimulation, compared with findings in the CPR group. Both LVNS and RVNS ameliorated myocardial function and increased the expression of α-7 nicotinic acetylcholine receptor in the myocardium after ROSC. Moreover, a clear improvement in 72-hour survival was shown with VNS pre-treatment, with no significant difference in efficacy when comparing the laterality of stimulation. CONCLUSIONS: LVNS may have similar effects as RVNS on improving outcomes after CPR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa