Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300972

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Camundongos , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Anticorpos Monoclonais , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos
2.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855618

RESUMO

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Assuntos
Begomovirus , Endocitose , Hemípteros , Animais , Begomovirus/fisiologia , Clatrina/metabolismo , Endossomos , Hemípteros/metabolismo , Hemípteros/virologia , Doenças das Plantas , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
3.
New Phytol ; 215(2): 699-710, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382644

RESUMO

The interactions of vector-virus-plant have important ecological and evolutionary implications. While the tripartite interactions have received some attention, little is known about whether vector infestation affects subsequent viral transmission and infection. Working with the whitefly Bemisia tabaci, begomovirus and tobacco/tomato, we demonstrate that pre-infestation of plants by the whitefly vector reduced subsequent plant susceptibility to viral transmission. Pre-infestation by the cotton bollworm, a nonvector of the virus, likewise repressed subsequent viral transmission. The two types of insects, with piercing and chewing mouthparts, respectively, activated different plant signaling pathways in the interactions. Whitefly pre-infestation activated the salicylic acid (SA) signaling pathway, leading to deposition of callose that inhibited begomovirus replication/movement. Although cotton bollworm infestation elicited the jasmonic acid (JA) defense pathway and was beneficial to virus replication, the pre-infested plants repelled whiteflies from feeding and so decreased virus transmission. Experiments using a pharmaceutical approach with plant hormones or a genetic approach using hormone transgenic or mutant plants further showed that SA played a negative but JA played a positive role in begomovirus infection. These novel findings indicate that both vector and nonvector insect feeding of a plant may have substantial negative consequences for ensuing viral transmission and infection.


Assuntos
Begomovirus/patogenicidade , Insetos Vetores/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Animais , Ciclopentanos/metabolismo , Suscetibilidade a Doenças , Hemípteros , Herbivoria , Insetos Vetores/virologia , Lepidópteros , Solanum lycopersicum/fisiologia , Mutação , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Nicotiana/fisiologia
4.
Virol Sin ; 38(2): 257-267, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36596381

RESUMO

Neutralizing monoclonal antibodies (mAb) are a major therapeutic strategy for the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The continuous emergence of new SARS-CoV-2 variants worldwide has increased the urgency for the development of new mAbs. In this study, we immunized mice with the receptor-binding domain (RBD) of the SARS-CoV-2 prototypic strain (WIV04) and screened 35 RBD-specific mAbs using hybridoma technology. Results of the plaque reduction neutralization test showed that 25 of the mAbs neutralized authentic WIV04 strain infection. The 25 mAbs were divided into three categories based on the competitive enzyme-linked immunosorbent assay results. A representative mAb was selected from each category (RD4, RD10, and RD14) to determine the binding kinetics and median inhibitory concentration (IC50) of WIV04 and two variants of concern (VOC): B.1.351 (Beta) and B.1.617.2 (Delta). RD4 neutralized the B.1.617.2 variant with an IC50 of 2.67 â€‹ng/mL; however, it completely lost neutralizing activity against the B.1.351 variant. RD10 neutralized both variants with an IC50 exceeding 100 â€‹ng/mL; whereas RD14 neutralized two variants with a higher IC50 (>1 â€‹mg/mL). Animal experiments were performed to evaluate the protective effects of RD4 and RD10 against various VOC infections. RD4 could protect Adv-hACE2 transduced mice from B.1.617.2 infection at an antibody concentration of 25 â€‹mg/kg, while RD10 could protect mice from B.1.351 infection at an antibody concentration of 75 â€‹mg/kg. These results highlight the potential for future modifications of the mAbs for practical use.


Assuntos
Anticorpos Monoclonais , COVID-19 , Animais , Humanos , Camundongos , Hibridomas , SARS-CoV-2 , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Testes de Neutralização
5.
Insects ; 12(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383625

RESUMO

WRKY transcription factors are key regulators of many plant processes, most notably coping with biotic and abiotic stresses. Recently, the function of WRKY in plant defense against phloem-feeding insects such as whitefly (Bemisia tabaci) has been brought to attention. In this study, we found that the expression levels of Nicotiana tabacum WRKY4, WRKY6 and WRKY10 were significantly upregulated when tobacco plants were infested with whiteflies or treated with salicylic acid. Compared to controls, whiteflies lived longer and laid more eggs on NtWRKY-silenced tobacco plants but performed less well on NtWRKY-overexpressing plants. The three NtWRKYs interacted with five mitogen-activated protein kinases (NtMAPKs) in vivo and in vitro. These results suggest that the WRKYs in tobacco positively modulate plant defense against whiteflies through interaction with the mitogen-activated protein kinase cascade (MAPK cascade) pathways, and thus provide new insights into plant defense against phloem-feeding insects.

6.
Front Plant Sci ; 11: 574557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973859

RESUMO

Plant-mediated interactions between plant viruses and their vectors are important determinants of the population dynamics of both types of organisms in the field. The whitefly Bemisia tabaci can establish mutualism with begomoviruses via their shared host plants. This mutualism is achieved by the interaction between virulence factors and their host proteins. While the virulence factor ßC1 encoded by tomato yellow leaf curl China betasatellite (TYLCCNB), a subviral agent associated to the begomovirus tomato yellow leaf curl China virus (TYLCCNV), may interact with plant protein MYC2, thereby establishing the indirect mutualism between TYLCCNV and whitefly, whether other mechanisms are involved remains unknown. Here, we found the in vitro and in vivo interactions between ßC1 and tobacco protein S-phase kinase associated protein 1 (NtSKP1). Silencing the expression of NtSKP1 enhanced the survival rate and fecundity of whiteflies on tobacco plants. NtSKP1 could activate the transcription of genes in jasmonic acid (JA) pathways by impairing the stabilization of JAZ1 protein. Moreover, ßC1-NtSKP1 interaction could interfere JAZ1 degradation and attenuate the plant JA defense responses. These results revealed a novel mechanism underlying the better performance of whiteflies on TYLCCNV/TYLCCNB-infected plants.

7.
Virology ; 531: 240-247, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30933715

RESUMO

Begomoviruses contain some of the most damaging viral disease agents of crops worldwide, and are transmitted by whiteflies of the Bemisia tabaci species complex. During the last 20 years, transovarial transmission of tomato yellow leaf curl virus (TYLCV) has been reported in two invasive species of the B. tabaci complex. To further decipher the importance of this mode of transmission, we analyzed transovarial transmission of TYLCV by seven whitefly species indigenous to China. TYLCV virions were detected in eggs of all species except one, and in nymphs of two species, but in none of the ensuing adults of all seven species. Our results suggest that these indigenous whiteflies are unable to transmit TYLCV, a begomovirus alien to China, via ova to produce future generations of viruliferous adults, although most of the species exhibit varying ability to carry over the virus to the eggs/nymphs of their offspring via transovarial transmission.


Assuntos
Begomovirus/fisiologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Animais , China , Hemípteros/classificação , Hemípteros/genética , Insetos Vetores/classificação , Insetos Vetores/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa