RESUMO
Fibroblast growth factor receptor-1 (FGFR1) activity at the plasma membrane is tightly controlled by the availability of co-receptors and competing receptor isoforms. We have previously shown that FGFR1 activity in pancreatic beta-cells modulates a wide range of processes, including lipid metabolism, insulin processing, and cell survival. More recently, we have revealed that co-expression of FGFR5, a receptor isoform that lacks a tyrosine-kinase domain, influences FGFR1 responses. We therefore hypothesized that FGFR5 is a co-receptor to FGFR1 that modulates responses to ligands by forming a receptor heterocomplex with FGFR1. We first show here increased FGFR5 expression in the pancreatic islets of nonobese diabetic (NOD) mice and also in mouse and human islets treated with proinflammatory cytokines. Using siRNA knockdown, we further report that FGFR5 and FGFR1 expression improves beta-cell survival. Co-immunoprecipitation and quantitative live-cell imaging to measure the molecular interaction between FGFR5 and FGFR1 revealed that FGFR5 forms a mixture of ligand-independent homodimers (â¼25%) and homotrimers (â¼75%) at the plasma membrane. Interestingly, co-expressed FGFR5 and FGFR1 formed heterocomplexes with a 2:1 ratio and subsequently responded to FGF2 by forming FGFR5/FGFR1 signaling complexes with a 4:2 ratio. Taken together, our findings identify FGFR5 as a co-receptor that is up-regulated by inflammation and promotes FGFR1-induced survival, insights that reveal a potential target for intervention during beta-cell pathogenesis.
Assuntos
Citocinas/imunologia , Diabetes Mellitus/genética , Células Secretoras de Insulina/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Diabetes Mellitus/imunologia , Dimerização , Feminino , Fator 2 de Crescimento de Fibroblastos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/imunologia , Regulação para CimaRESUMO
The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.
Assuntos
Antígenos CD/imunologia , Antígenos CD/metabolismo , Epitopos/imunologia , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Nitrogênio/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Antígeno AC133 , Biomarcadores/metabolismo , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Polissacarídeos/biossíntese , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Interferência de RNA , Reprodutibilidade dos Testes , Tunicamicina/farmacologiaRESUMO
The multi-disciplinary nature of science, technology, engineering, and math (STEM) careers often renders difficulty for high school students navigating from classroom knowledge to post-secondary pursuits. Discrepancies between the knowledge-based high school learning approach and the experiential approach of future studies leaves some students disillusioned by STEM. We present Discovery, a term-long inquiry-focused learning model delivered by STEM graduate students in collaboration with high school teachers, in the context of biomedical engineering. Entire classes of high school STEM students representing diverse cultural and socioeconomic backgrounds engaged in iterative, problem-based learning designed to emphasize critical thinking concomitantly within the secondary school and university environments. Assessment of grades and survey data suggested positive impact of this learning model on students' STEM interests and engagement, notably in under-performing cohorts, as well as repeating cohorts that engage in the program on more than one occasion. Discovery presents a scalable platform that stimulates persistence in STEM learning, providing valuable learning opportunities and capturing cohorts of students that might otherwise be under-engaged in STEM.
RESUMO
Commercial crab populations off the Kamchatka coasts are infested to a considerable degree by the rhizocephalan parasite Briarosaccus callosus: of 769 Lithodes aequispina males examined, 43 (5.7%) were parasitized. Infestations result in the feminization of the crabs, a significant decrease in the cheliped length, and a significant decrease in the carapace length and width. We suggest that commercial selection of healthy males, and the returning of unsuitable crabs, including infested ones, back into the sea, results in an increase of the proportion of infested crabs in the population, their elimination from reproduction, and, eventually, the gradual degradation of a whole population. To minimize as far as possible the negative effects of commercial crab harvesting, all infested crab specimens caught must be destroyed, either aboard or elsewhere, instead of throwing them back into the sea.
Assuntos
Anomuros/parasitologia , Crustáceos/fisiologia , Animais , Anomuros/crescimento & desenvolvimento , Anomuros/fisiologia , Comportamento Animal , Crustáceos/patogenicidade , Feminino , Pesqueiros/métodos , Interações Hospedeiro-Parasita , MasculinoRESUMO
Target identification is a critical step in the lengthy and expensive process of drug development. Here, we describe a genome-wide screening platform that uses systematic overexpression of pooled human ORFs to understand drug mode-of-action and resistance mechanisms. We first calibrated our screen with the well-characterized drug methotrexate. We then identified new genes involved in the bioactivity of diverse drugs including antineoplastic agents and biologically active molecules. Finally, we focused on the transcription factor RHOXF2 whose overexpression conferred resistance to DNA damaging agents. This approach represents an orthogonal method for functional screening and, to our knowledge, has never been reported before.
RESUMO
All somatic mammalian cells carry two copies of chromosomes (diploidy), whereas organisms with a single copy of their genome, such as yeast, provide a basis for recessive genetics. Here we report the generation of haploid mouse ESC lines from parthenogenetic embryos. These cells carry 20 chromosomes, express stem cell markers, and develop into all germ layers in vitro and in vivo. We also developed a reversible mutagenesis protocol that allows saturated genetic recessive screens and results in homozygous alleles. This system allowed us to generate a knockout cell line for the microRNA processing enzyme Drosha. In a forward genetic screen, we identified Gpr107 as a molecule essential for killing by ricin, a toxin being used as a bioweapon. Our results open the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale.
Assuntos
Células-Tronco Embrionárias/fisiologia , Haploidia , Genética Reversa/métodos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Endogâmicos C57BL , Partenogênese/genética , Ricina/toxicidadeRESUMO
vasa (vas)-related genes are members of the DEAD-box protein family and are expressed in the germ cells of many Metazoa. We cloned vasa-related genes (PpVLG, CpVLG) and other DEAD-box family related genes (PpDRH1, PpDRH2, CpDRH, AtDRHr) from the colonial parasitic rhizocephalan barnacle Polyascus polygenea, the non-colonial Clistosaccus paguri (Crustacea: Cirripedia: Rhizocephala), and the parasitic isopodan Athelgis takanoshimensis (Crustacea: Isopoda). The colonial Polyascus polygenea, a parasite of the coastal crabs Hemigrapsus sanguineus and Hemigrapsus longitarsis was used as a model object for further detailed investigations. Phylogenetic analysis suggested that PpVLG and CpVLG are closely related to vasa-like genes of other Arthropoda. The rest of the studied genes form their own separate branch on the phylogenetic tree and have a common ancestry with the p68 and PL10 subfamilies. We suppose this group may be a new subfamily of the DEAD-box RNA helicases that is specific for parasitic Crustacea. We found PpVLG and PpDRH1 expression products in stem cells from stolons and buds of internae, during asexual reproduction of colonial P. polygenea, and in germ cells from sexually reproducing externae, including male spermatogenic cells and female oogenic cells.