RESUMO
The Anthropocene's human-dominated habitat expansion endangers global biodiversity. However, large mammalian herbivores experienced few extinctions during the 20th century, hinting at potentially overlooked ecological responses of a group sensitive to global change. Using dental microwear as a proxy, we studied large herbivore dietary niches over a century across mainland China before (1880s-1910s) and after (1970s-1990s) the human population explosion. We uncovered widespread and significant shifts (interspecific microwear differences increased and intraspecific microwear dispersion expanded) within dietary niches linked to geographical areas with rapid industrialization and population growth in eastern China. By contrast, in western China, where human population growth was slower, we found no indications of shifts in herbivore dietary niches. Further regression analysis links the intensity of microwear changes to human land-use expansion. These analyses highlight dietary adjustments of large herbivores as a likely key factor in their adaptation across a century of large-scale human-driven changes.
Assuntos
Herbivoria , Mamíferos , Animais , Humanos , Ecossistema , Biodiversidade , ChinaRESUMO
Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China. We found that bird species richness increased with island area and decreased with isolation, regardless of the intensity of land-use change. However, forest-dominated habitats exhibited lower richness than farmland-dominated habitats. Island bird assemblages generally comprised species that share more similar traits or evolutionary histories (i.e. functional and/or phylogenetic clustering) than expected if assemblages were randomly assembled. Contrary to our expectations, we observed that bird assemblages in forest-dominated habitats were more clustered on large and close islands, whereas assemblages in farmland-dominated habitats were more clustered on small islands. These contrasting results indicate that land-use change interacts with island biogeography to alter the community assembly of birds on inhabited islands. Our findings emphasize the importance of incorporating human-modified habitats when examining the community assembly of island biota, and further suggest that agricultural landscapes on large islands may play essential roles in protecting countryside island biodiversity.
Assuntos
Biodiversidade , Aves , Animais , Humanos , Filogenia , Ilhas , EcossistemaRESUMO
Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.
Assuntos
Biodiversidade , Aves , Animais , Filogenia , Ilhas , EcossistemaRESUMO
Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China. For each island, we constructed an antagonistic plant-aphid and a mutualistic aphid-ant network, and tested how network specialization varied with island area and isolation. We found that both networks exhibited higher specialization on smaller islands, while only aphid-ant networks had increased specialization on more isolated islands. Variations in network specialization among islands was primarily driven by species turnover, which was interlinked across trophic levels as fragmentation increased the specialization of both antagonistic and mutualistic networks through bottom-up effects via plant and aphid communities. These findings reveal that species on small and isolated islands display higher specialization mainly due to effects of fragmentation on species turnover, with behavioural changes causing interaction rewiring playing only a minor role. Our study highlights the significance of adopting a multi-trophic perspective when exploring patterns and processes in structuring ecological networks in fragmented landscapes.
Assuntos
Formigas , Afídeos , Animais , Ecossistema , Florestas , Plantas , Afídeos/fisiologia , Estado Nutricional , Formigas/fisiologia , SimbioseRESUMO
Building ecological networks is the fundamental basis of depicting how species in communities interact, but sampling complex interaction networks is extremely labour intensive. Recently, indirect ecological information has been applied to build interaction networks. Here we propose to extend the source of indirect ecological information, and applied regional ecological knowledge to build local interaction networks. Using a high-resolution dataset consisting of 22 locally observed networks with 17 572 seed-dispersal events, we test the reliability of indirectly derived local networks based on regional ecological knowledge (REK) across islands. We found that species richness strongly influenced 'local interaction rewiring' (i.e. the proportion of locally observed interactions among regionally interacting species), and all network properties were biased using REK-based networks. Notably, species richness and local interaction rewiring strongly affected estimations of REK-based network structures. However, locally observed and REK-based networks detected the same trends of how network structure correlates to island area and isolation. These results suggest that we should use REK-based networks cautiously for reflecting actual interaction patterns of local networks, but highlight that REK-based networks have great potential for comparative studies across environmental gradients. The use of indirect regional ecological information may thus advance our understanding of biogeographical patterns of species interactions.
Assuntos
Dispersão de Sementes , Ilhas , Reprodutibilidade dos Testes , Sementes , EcossistemaRESUMO
The Equilibrium Theory of Island Biogeography postulates that larger and closer islands support higher biodiversity through the dynamic balance of colonization and extinction processes. The negative diversity-isolation (i.e. the distance to the mainland) relationship is derived based on the assumption that the mainland is the only source pool for island biotas. However, nearby islands could also act as species sources for focal islands via a source effect. In this study, we move a further step and hypothesize that nearby islands may reduce bird colonizers of the focal island and diminish its biodiversity, resulting in a negative target effect. To test our hypothesis, we assessed the effects of island area and isolation (metrics considering both the mainland and nearby islands) on taxonomic (i.e. species richness), functional and phylogenetic diversity of terrestrial breeding birds on 42 islands in the largest archipelago of China, the Zhoushan Archipelago. Furthermore, we compared the predictive power of the distance to the large island under a set of relative area thresholds and the relative area of nearby islands on species richness under a set of distance thresholds to explore the role of nearby islands as a source and/or target island. We found that island area had a positive effect on species richness, phylogenetic diversity and functional diversity, while the distance to the mainland had a negative effect only on species richness. Species richness on the focal island increased with increasing distance to the nearest larger island, indicating the negative target effect. Furthermore, the negative target effect depended on the area of nearby islands relative to the area of the focal island. Our finding of the negative target effect suggests islands located between the mainland and the focal island can be not only sources or stepping stones, but also colonization targets. This result demonstrates the importance of considering multiple geographical attributes of islands in island biogeographic studies, especially the characteristics related to source and/or target effects.
Assuntos
Biodiversidade , Biota , Animais , Filogenia , Ilhas , Geografia , AvesRESUMO
Islands frequently harbour unique assemblages of species, yet their ecological roles and differences are largely ignored in island biogeography studies. Here, we examine eco-evolutionary processes structuring mammal assemblages on oceanic islands worldwide, including all extant and extinct late-Quaternary mammal species. We find island mammal assemblages tend to be phylogenetically clustered (share more recent evolutionary histories), with clustering increasing with island area and isolation. We also observe that mammal assemblages often tend to be functionally clustered (share similar traits), but the strength of clustering is weak and generally independent from island area or isolation. These findings indicate the important roles of in situ speciation and dispersal filtering in shaping island mammal assemblages under pre-anthropogenic conditions, notably through adaptive radiation of a few clades (e.g. bats, with generally high dispersal abilities). Our study demonstrates that considering the functional and phylogenetic axes of diversity can better reveal the eco-evolutionary processes of island community assembly.
Assuntos
Mamíferos , Animais , Análise por Conglomerados , Ilhas , Oceanos e Mares , FilogeniaRESUMO
Foliar fungi (defined as all fungal species in leaves after surface sterilization; hereafter, 'FF') are of great importance to host plant growth and health, and can also affect ecosystem functioning. Despite this importance, few studies have explicitly examined the role of host filtering in shaping local FF communities, and we know little about the differences of FF community assembly between symptomatic (caused by fungal pathogens) and asymptomatic leaves, and whether there is phylogenetic congruence between host plants and FF. We examined FF communities from 25 host plant species (for each species, symptomatic and asymptomatic leaves, respectively) in an alpine meadow of the Tibetan Plateau using MiSeq sequencing of ITS1 gene biomarkers. We evaluated the phylogenetic congruence of FF-plant interactions based on cophylogenetic analysis, and examined α- and ß-phylogenetic diversity indices of the FF communities. We found strong support for phylogenetic congruence between host plants and FF for both asymptomatic and symptomatic leaves, and a host-caused filter appears to play a major role in shaping FF communities. Most importantly, we provided independent lines of evidence that host environmental filtering (caused by fungal infections) outweighs competitive exclusion in driving FF community assembly in symptomatic leaves. Our results help strengthen the foundation of FF community assembly by demonstrating the importance of host environmental filtering in driving FF community assembly.
Assuntos
Micobioma , Ecossistema , Filogenia , Folhas de Planta , PlantasRESUMO
Incorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. We used long-term counts of breeding bird species that were detected at least once on islands in a land-bridge island system, and employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies. Our results showed that taxonomic, functional, and phylogenetic diversity were all underestimated significantly as a result of species' imperfect detection, with taxonomic diversity showing the greatest bias. The functional and phylogenetic structure calculated from observed communities were both more clustered than those from the detection-corrected communities due to missed distinct species. The discrepancy between observed and estimated diversity differed according to the measure of biodiversity employed. Our study demonstrates the importance of accounting for species' imperfect detection in biodiversity studies, especially for functional and phylogenetic community ecology, and when attempting to infer community assembly processes. With datasets that allow for detection-corrected community structure, we can better estimate diversity and infer the underlying mechanisms that structure community assembly, and thus make reliable management decisions for the conservation of biodiversity.
Assuntos
Biodiversidade , Aves/classificação , Animais , Ecologia , Ilhas , FilogeniaRESUMO
Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental filtering hypothesis. Our study demonstrates the importance of integrating multiple forms of diversity for understanding the effects of habitat loss and fragmentation, and further reveals that TIB could be extended to community measures by moving beyond assumptions of species equivalency in colonisation rates and extinction susceptibilities.
Assuntos
Biota , Aves/fisiologia , Ecossistema , Filogenia , Animais , Aves/classificação , China , IlhasRESUMO
Taxonomic diversity considers all species being equally different from each other and thus disregards species' different ecological functions. Exploring taxonomic and functional aspects of biodiversity simultaneously can better understand the processes of community assembly. We analysed taxonomic and functional alpha and beta diversities of breeding bird assemblages on land-bridge islands in the Thousand Island Lake, China. Given the high dispersal ability of most birds at this spatial scale (several kilometres), we predicted (i) selective extinction driving alpha and beta diversities after the creation of land-bridge islands of varying area and (ii) low taxonomic and functional beta diversities that were not correlated to spatial distance. Breeding birds were surveyed on 37 islands annually from 2007 to 2014. We decomposed beta diversity of breeding birds into spatial turnover and nestedness-resultant components, and related taxonomic and functional diversities to island area and isolation using power regression models (for alpha diversity) and multiple regression models on distance matrices (for beta diversity). We then ran simulations to assess the strength of the correlations between taxonomic and functional diversities. Results revealed that both taxonomic and functional alpha diversities increased with island area. The taxonomic nestedness-resultant and turnover components increased and decreased with difference in area, respectively, but functional counterparts did not. Isolation played a minor role in explaining alpha- and beta-diversity patterns. By partitioning beta diversity, we found low levels of overall taxonomic and functional beta diversities. The functional nestedness-resultant component dominated overall functional beta diversity, whereas taxonomic turnover was the dominant component for taxonomic beta diversity. The simulation showed that functional alpha and beta diversities were significantly correlated with taxonomic diversities, and the observed values of correlations were significantly different from null expectations of random extinction. Our assessment of island bird assemblages validated the predictions of no distance effects and low beta diversity due to pervasive dispersal events among islands and also suggested that selective extinction drives taxonomic and functional alpha and beta diversities. The contrasting turnover and nestedness-resultant components of taxonomic and functional beta diversities demonstrate the importance of considering the multifaceted nature of biodiversity when examining community assembly.
Assuntos
Biodiversidade , Aves , Extinção Biológica , Animais , China , Ilhas , Modelos Biológicos , Dinâmica PopulacionalRESUMO
Seed dispersal by frugivorous birds facilitates plant invasions, but it is poorly known how invasive plants integrate into native communities in fragmented landscapes. We surveyed plant-frugivore interactions, including an invasive plant (Phytolacca americana), on 22 artificial land-bridge islands (fragmented forests) in the Thousand Island Lake, China. Focusing on frugivory interactions that may lead to seed dispersal, we built ecological networks of studied islands both at the local island (community) and at landscape (metacommunity) levels. On islands with P. americana, we found that P. americana impacted local avian frugivory networks more on islands with species-poor plant communities and on isolated islands. Moreover, as P. americana interacted mainly with local core birds (generalists), this indicates reduced seed dispersal of native plants on invaded islands. At the landscape level, P. americana had established strong interactions with generalist birds that largely maintain seed-dispersal functions across islands, as revealed by their topologically central roles both in the regional plant-bird trophic network and in the spatial metanetwork. This indicates that generalist frugivorous birds may have facilitated the dispersal of P. americana across islands, making P. americana well integrated into the plant-frugivore mutualistic metacommunity. Taken together, our study demonstrates that the impact of plant invasion is context-dependent and that generalist native frugivores with high dispersal potential may accelerate plant invasion in fragmented landscapes. These findings highlight the importance of taking the functional roles of animal mutualists and habitat fragmentation into account when managing plant invasions and their impact on native communities.
Assuntos
Frutas , Dispersão de Sementes , Animais , Ecossistema , Florestas , Plantas , Aves , Comportamento Alimentar , IlhasRESUMO
Geographical background and dispersal ability may strongly influence assemblage dissimilarity; however, these aspects have generally been overlooked in previous large-scale beta diversity studies. Here, we examined whether the patterns and drivers of taxonomic beta diversity (TBD) and phylogenetic beta diversity (PBD) of breeding birds in China vary across (1) regions on both sides of the Hu Line, which demarcates China's topographical, climatic, economic, and social patterns, and (2) species with different dispersal ability. TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach. Variables representing climate, habitat heterogeneity, and habitat quality were employed to evaluate the effects of environmental filtering. Spatial distance was considered to assess the impact of dispersal limitation. Variance partitioning analysis was applied to assess the relative roles of these variables. In general, the values of TBD and PBD were high in mountainous areas and were largely determined by environmental filtering. However, different dominant environmental filters on either side of the Hu Line led to divergent beta diversity patterns. Specifically, climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions east and west of the line, respectively. Additionally, bird species with stronger dispersal ability were more susceptible to environmental filtering, resulting in more homogeneous assemblages. Our results indicated that regions with distinctive geographical backgrounds may present different ecological factors that lead to divergent assemblage dissimilarity patterns, and dispersal ability determines the response of assemblages to these ecological factors. Identifying a single universal explanation for the observed pattern without considering these aspects may lead to simplistic or incomplete conclusions. Consequently, a comprehensive understanding of large-scale beta diversity patterns and effective planning of conservation strategies necessitate the consideration of both geographical background and species dispersal ability.
Assuntos
Biodiversidade , Ecossistema , Animais , Filogenia , China , Aves/genéticaRESUMO
Edge effects often exacerbate the negative effects of habitat loss on biodiversity. In forested ecosystems, however, many pollinators actually prefer open sunny conditions created by edge disturbances. We tested the hypothesis that forest edges have a positive buffering effect on plant-pollinator interaction networks in the face of declining forest area. In a fragmented land-bridge island system, we recorded ~20,000 plant-pollinator interactions on 41 islands over 3 yr. We show that plant richness and floral resources decline with decreasing forest area at both interior and edge sites, but edges maintain 10-fold higher pollinator abundance and richness regardless of area loss. Edge networks contain highly specialized species, with higher nestedness and lower modularity than interior networks, maintaining high robustness to extinction following area loss while forest interior networks collapse. Anthropogenic forest edges benefit community diversity and network robustness to extinction in the absence of natural gap-phase dynamics in small degraded forest remnants.
Assuntos
Ecossistema , Florestas , Biodiversidade , PlantasRESUMO
Island biogeography theory has proved a robust approach to predicting island biodiversity on the assumption of species equivalency. However, species differ in their grouping behaviour and are entangled by complex interactions in island communities, such as competition and mutualism. We here investigated whether intra- and/or interspecific sociality may influence biogeographic patterns, by affecting movement between islands or persistence on them. We classified bird species in a subtropical reservoir island system into subcommunities based on their propensity to join monospecific and mixed-species flocks. We found that subcommunities which had high propensity to flock interspecifically had higher colonization rates and lower extinction rates over a 10-year period. Intraspecific sociality increased colonization in the same analysis. A phylogenetically corrected analysis confirmed the importance of interspecific sociality, but not intraspecific sociality. Group-living could enable higher risk crossings, with greater vigilance also linked to higher foraging efficiency, enabling colonization or long-term persistence on islands. Further, if group members are other species, competition can be minimized. Future studies should investigate different kinds of island systems, considering positive species interactions driven by social behaviour as potential drivers of community assembly on islands. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Assuntos
Biodiversidade , Comportamento Social , Animais , Aves , Ilhas , Extinção BiológicaRESUMO
Habitat loss has been a primary threat to biodiversity. However, species do not function in isolation but often associate with each other and form complex networks. Thus, revealing how the network complexity and stability scale with habitat area will give us more insights into the effects of habitat loss on ecosystems. In this study, we explored the relationships between the island area and the network complexity and stability of soil microbes. We found that the complexity and stability of soil microbial co-occurrence networks scale positively with island area, indicating that habitat loss will potentially simplify and destabilize soil microbial networks.
RESUMO
Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity, especially for amphibians. However, the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood. Here, we explored amphibian phylogenetic and functional diversity along a 2 600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China. We also assessed the relative importance of spatial (area) and environmental factors (temperature, precipitation, solar radiation, normalized difference vegetation index, and potential evapotranspiration) in shaping amphibian distribution and community structure. Results showed that the phylogenetic and functional diversities were unimodal with elevation, while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation. Phylogenetic net relatedness, nearest taxon index, and functional net relatedness index all showed a positive to negative trend with elevation, indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion. Overall, our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains, with the dominant role potentially switching with elevation. This study provides insights into the underlying assembly mechanisms of mountain amphibians, integrating multidimensional diversity.
Assuntos
Altitude , Anfíbios , Distribuição Animal , Biodiversidade , Filogenia , Animais , China , TibetRESUMO
Habitat fragmentation impacts seed dispersal processes that are important in maintaining biodiversity and ecosystem functioning. However, it is still unclear how habitat fragmentation affects frugivorous interactions due to the lack of high-quality data on plant-frugivore networks. Here we recorded 10,117 plant-frugivore interactions from 22 reservoir islands and six nearby mainland sites using the technology of arboreal camera trapping to assess the effects of island area and isolation on the diversity, structure, and stability of plant-frugivore networks. We found that network simplification under habitat fragmentation reduces the number of interactions involving specialized species and large-bodied frugivores. Small islands had more connected, less modular, and more nested networks that consisted mainly of small-bodied birds and abundant plants, as well as showed evidence of interaction release (i.e., dietary expansion of frugivores). Our results reveal the importance of preserving large forest remnants to support plant-frugivore interaction diversity and forest functionality.
Assuntos
Ecossistema , Frutas , Animais , Árvores , Florestas , Aves , PlantasRESUMO
Brood parasites such as the common cuckoo Cuculus canorus exploit the parental abilities of their hosts, hosts avoid brood parasitism and predation by showing specific behavior such as loss of feathers, emission of fear screams and contact calls, displaying wriggle behavior to avoid hosts or potential prey, pecking at hosts and prey, and expressing tonic immobility (showing behavior like feigning death or rapid escape from predators and brood parasites). These aspects of escape behavior are consistent for individuals but also among sites, seasons, and years. Escape behavior expressed in response to a broad range of cuckoo hosts and prey are consistently used against capture by humans, but also hosts and brood parasites and predators and their prey. An interspecific comparative phylogenetic analysis of escape behavior by hosts and their brood parasites and prey and their predators revealed evidence of consistent behavior when encountering potential parasites or predators. We hypothesize that personality axes such as those ranging from fearfulness to being bold, and from neophobic to curiosity response in brood parasites constitute important components of defense against brood parasitism that reduces the overall risk of parasitism.
RESUMO
During a 2018 antimicrobial resistance surveillance of Escherichia coli isolates from diarrheal calves in Xinjiang Province, China, an unexpectedly high prevalence (48.5%) of fosfomycin resistance was observed. This study aimed to reveal the determinants of fosfomycin resistance and the underlying transmission mechanism. Polymerase chain reaction (PCR) screening showed that all fosfomycin-resistant E. coli carried the fosA3 gene. Pulsed-field gel electrophoresis (PFGE) and southern blot hybridization revealed that the 16 fosA3-positive isolates belonged to four different PFGE patterns (i.e., A, B, C, D). The fosA3 genes of 11 clonally related strains (pattern D) were located on the chromosome, while others were carried by plasmids. Whole-genome and long-read sequencing indicated that the pattern D strains were E. coli O101: H9-ST10, and the pattern C, B, and A strains were O101: H9-ST167, O8: H30-ST1431, and O101: H9 with unknown ST, respectively. Among the pattern C strains, the bla CTX-M-14 gene was co-localized with the fosA3 gene on the F18: A-: B1 plasmids. Interestingly, phylogenetic analysis based on core genome single nucleotide polymorphisms (cgSNPs) showed that the O101: H9-ST10 strains were closely related to a Australian-isolated Chroicocephalus-origin E. coli O101: H9-ST10 strain producing CTX-M-14 and FosA3, with a difference of only 11 SNPs. These results indicate possible international dissemination of the high-risk E. coli clone O101: H9-ST10 by migratory birds.