RESUMO
BACKGROUND: Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants. METHODS AND RESULTS: In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha-1) and low N (60 kg ha-1). Cultivar Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic efficiency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism and physiological assimilation. CONCLUSION: Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for nitrogen utilization efficiency at low N treatment.
Assuntos
Nitrogênio , Oryza , Nitrogênio/metabolismo , Oryza/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Plantas/genética , Perfilação da Expressão GênicaRESUMO
Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.
Assuntos
Catharanthus , Alternaria , Catharanthus/química , Extratos Vegetais , VincristinaRESUMO
To study the efflux of gold (Au) in living cells, a genetically encoded fluorescence resonance energy transfer (FRET)-based sensor has been developed. The gold-sensing domain GolB from Salmonella typhimurium has been fused to the N- and C-termini of the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus respectively. In living cells, this probe is highly selective and sensitive to gold and it can withstand changes in variable pH ranges. GolSeN-25, the most efficient sensor variant, binds gold with an affinity (K d) of 0.3 × 10-6 M, covering gold concentrations of nM to µM, and can be used for non-invasive real-time in vivo gold measurement in living cells. A simple and sensitive FRET probe was designed for the detection of gold with high selectivity and can be applied to the analysis of real samples.
RESUMO
Vincristine is an anti-cancer compound and one of the most crucial vinca alkaloids produced by the medicinal plant Catharanthus roseus (L.) G. Don. (Apocynaceae). This plant is home to hundreds of endophytic microbes, which produce a variety of bioactive secondary metabolites that are known for their medicinal properties. In this study, we focused on isolating an endophytic fungus that could increase the yield of vincristine under laboratory conditions as an alternative to plant-mediated extraction of vincristine. The endophytic fungus Nigrospora zimmermanii (Apiosporaceae) was isolated from Catharanthus roseus and it was found to be producing the anticancer compound vincristine. It was identified using high-performance thin-layer chromatography by matching the Rf value and spectral data with the vincristine standard and mass spectrometry data and the reference molecule from the PubChem database. The generation study of this microbe showed that the production of vincristine in the parent fungus was at its maximum, i.e., 5.344 µg/mL, while it was slightly reduced in subsequent generations. A colonization study was also performed and it showed that the fungus N. zimmermanii was able to re-infect the plant Catharanthus roseus after 20 days of inoculation. The colonization study showed that N. zimmernanii could infect the plant after isolation. This method is an efficient and easy way to obtain a high yield of vincristine, as compared to plant-mediated production.
RESUMO
Silver is commonly used in wound dressing, photography, health care products, laboratories, pharmacy, biomedical devices, and several industrial purposes. Silver (Ag+) ions are more toxic pollutants widely scattered in the open environment by natural processes and dispersed in soil, air, and water bodies. Ag+ binds with metallothionein, macroglobulins, and albumins, which may lead to the alteration of various enzymatic metabolic pathways. To analyze the uptake and metabolism of silver ions in vitro as well as in cells, a range of high-affinity fluorescence-based nanosensors has been constructed using a periplasmic protein CusF, a part of the CusCFBA efflux complex, which is involved in providing resistance against copper and silver ions in Escherichia coli. This nanosensor was constructed by combining of two fluorescent proteins (donor and acceptor) at the N- and C-terminus of the silver-binding protein (CusF), respectively. SenSil (WT) with a binding constant (K d) of 5.171 µM was more efficient than its mutant variants (H36D and F71W). This nanosensor allows monitoring the level of silver ions in real time in prokaryotes and eukaryotes without any disruption of cells or tissues.
RESUMO
One of the major abiotic stresses that affect productivity of rice is salinity. Rice cultivars showed significant genetic variation in response to salt stress. In the present investigation, differential growth pattern and physio-chemical traits-based screening of high yielding rice cultivars of various salt affected areas of India was carried out, and salt-sensitive and salt-tolerant cultivars were identified. Differential responses of antioxidant enzyme activity and tolerance index at maximum level of salt treatment depicted that Jhelum and Vytilla-4 cultivars of rice were sensitive and tolerant to salt stress, respectively. Analysis of growth, morpho-physiological, and biochemical parameters also confirmed the salt-tolerant and salt-sensitive characters of cv. Vytilla-4 and cv. Jhelum, respectively. Nano-LCMS/MS-based proteome profile of these two cultivars was carried out to find out the mechanism lying behind the salt tolerance. A total number of 514 and 770 protein spots were reported in the most salt-tolerant (cv. Vytilla-4) and salt-sensitive (cv. Jhelum) cultivars, respectively. The differentially expressed proteins (DEPs) were found associated with major metabolic pathways including photosynthesis, energy metabolism, amino acid metabolism, nitrogen assimilation and stress and signalling pathways. The changes in the major proteins like Ribulose bisphosphate carboxylase small chain, chlorophyll a-b binding protein, phosphoglycerate kinase, cytochrome c oxidase subunit 5C, glutamine synthetase, glutathione S-transferase, peroxidase, and thioredoxin elucidated the mechanism activated by salt-tolerant cv. Vytilla-4. The transcriptional validation of some of the differentially expressed proteins through real-time quantitative PCR analysis further validated the proteomic results. Outcomes of this work could help in finding out the potential cross-links of different pathways involved in salt-tolerance mechanisms operating in the studied here rice cultivars under salt stress.
Assuntos
Oryza , Estresse Salino , Clorofila A , Índia , Proteínas de Plantas , Proteoma , ProteômicaRESUMO
Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells.