Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e110959, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314723

RESUMO

One-third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar-binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin-based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.


Assuntos
Chaperonas Moleculares , Proteoma , Humanos , Calnexina/metabolismo , Proteoma/metabolismo , Chaperonas Moleculares/metabolismo , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas de Ligação ao Cálcio/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(39): e2207257119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122228

RESUMO

Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.


Assuntos
Hibernação , Proteínas Ribossômicas , Bactérias/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , NAD/metabolismo , Oxirredutases/metabolismo , Proteínas Ribossômicas/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(10): e2118227119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238645

RESUMO

SignificanceHost-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Catecolaminas/fisiologia , Fatores Quimiotáticos/fisiologia , Quimiotaxia/fisiologia , Vibrio/fisiologia , Catecóis/química , Fatores Quimiotáticos/metabolismo , Ferro/análise , Sondas Moleculares/química , Ligação Proteica , Proteômica/métodos , Transdução de Sinais
4.
Biochemistry ; 63(5): 651-659, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38388156

RESUMO

AMPylation is a post-translational modification utilized by human and bacterial cells to modulate the activity and function of specific proteins. Major AMPylators such as human FICD and bacterial VopS have been studied extensively for their substrate and target scope in vitro. Recently, an AMP pronucleotide probe also facilitated the in situ analysis of AMPylation in living cells. Based on this technology, we here introduce a novel UMP pronucleotide probe and utilize it to profile uninfected and Vibrio parahaemolyticus infected human cells. Mass spectrometric analysis of labeled protein targets reveals an unexpected promiscuity of human nucleotide transferases with an almost identical target set of AMP- and UMPylated proteins. Vice versa, studies in cells infected by V. parahaemolyticus and its effector VopS revealed solely AMPylation of host enzymes, highlighting a so far unknown specificity of this transferase for ATP. Taken together, pronucleotide probes provide an unprecedented insight into the in situ activity profile of crucial nucleotide transferases, which can largely differ from their in vitro activity.


Assuntos
Nucleotídeos , Transferases , Humanos , Nucleotídeos/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Monofosfato de Adenosina/metabolismo , Processamento de Proteína Pós-Traducional
5.
Chembiochem ; 25(13): e202400024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716781

RESUMO

Lagunamide A is a biologically active natural product with a yet unidentified molecular mode of action. Cellular studies revealed that lagunamide A is a potent inhibitor of cancer cell proliferation, promotes apoptosis and causes mitochondrial dysfunction. To decipher the cellular mechanism responsible for these effects, we utilized thermal protein profiling (TPP) and identified EYA3 as a stabilized protein in cells upon lagunamide A treatment. EYA3, involved in the DNA damage repair process, was functionally investigated via siRNA based knockdown studies and corresponding effects of lagunamide A on DNA repair were confirmed. Furthermore, we showed that lagunamide A sensitized tumor cells to treatment with the drug doxorubicin highlighting a putative therapeutic strategy.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Dano ao DNA , Reparo do DNA , Proteoma , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteoma/análise , Linhagem Celular Tumoral , Doxorrubicina/farmacologia
6.
Org Biomol Chem ; 22(10): 1998-2002, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38375536

RESUMO

Surface-adhered bacteria on implants represent a major challenge for antibiotic treatment. We introduce hydrogel-coated surfaces loaded with tailored Pd-nanosheets which catalyze the release of antibiotics from inactive prodrugs. Masked and antibiotically inactive fluoroquinolone analogs were efficiently activated at the surface and prevented the formation of Staphylococcus aureus biofilms.


Assuntos
Pró-Fármacos , Infecções Estafilocócicas , Humanos , Fluoroquinolonas/farmacologia , Pró-Fármacos/farmacologia , Antibacterianos/farmacologia , Biofilmes
7.
J Chem Inf Model ; 64(12): 4640-4650, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38836773

RESUMO

The precise prediction of molecular properties can greatly accelerate the development of new drugs. However, in silico molecular property prediction approaches have been limited so far to assays for which large amounts of data are available. In this study, we develop a new computational approach leveraging both the textual description of the assay of interest and the chemical structure of target compounds. By combining these two sources of information via self-supervised learning, our tool can provide accurate predictions for assays where no measurements are available. Remarkably, our approach achieves state-of-the-art performance on the FS-Mol benchmark for zero-shot prediction, outperforming a wide variety of deep learning approaches. Additionally, we demonstrate how our tool can be used for tailoring screening libraries for the assay of interest, showing promising performance in a retrospective case study on a high-throughput screening campaign. By accelerating the early identification of active molecules in drug discovery and development, this method has the potential to streamline the identification of novel therapeutics.


Assuntos
Descoberta de Drogas , Descoberta de Drogas/métodos , Bioensaio , Ensaios de Triagem em Larga Escala , Estrutura Molecular
8.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029352

RESUMO

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Assuntos
Dipeptídeos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Domínio Catalítico , Dipeptídeos/metabolismo , Virulência , Endopeptidase Clp/metabolismo
9.
J Biol Chem ; 298(12): 102677, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336075

RESUMO

Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and ß subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate ß subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:ß assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.


Assuntos
Citocinas , Isomerases de Dissulfetos de Proteínas , Humanos , Interleucina-12 , Interleucina-23 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Retículo Endoplasmático
10.
Chembiochem ; 24(5): e202200455, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538283

RESUMO

The blue biliprotein phycocyanin, produced by photo-autotrophic cyanobacteria including spirulina (Arthrospira) and marketed as a natural food supplement or "nutraceutical," is reported to have anti-inflammatory, antioxidant, immunomodulatory, and anticancer activity. These diverse biological activities have been specifically attributed to the phycocyanin chromophore, phycocyanobilin (PCB). However, the mechanism of action of PCB and the molecular targets responsible for the beneficial properties of PCB are not well understood. We have developed a procedure to rapidly cleave the PCB pigment from phycocyanin by ethanolysis and then characterized it as an electrophilic natural product that interacts covalently with thiol nucleophiles but lacks any appreciable cytotoxicity or antibacterial activity against common pathogens and gut microbes. We then designed alkyne-bearing PCB probes for use in chemical proteomics target deconvolution studies. Target identification and validation revealed the cysteine protease legumain (also known as asparaginyl endopeptidase, AEP) to be a target of PCB. Inhibition of this target may account for PCB's diverse reported biological activities.


Assuntos
Cisteína Proteases , Spirulina , Ficocianina/farmacologia , Ficocianina/química , Ficobilinas/farmacologia , Ficobilinas/química , Spirulina/química , Suplementos Nutricionais
11.
Angew Chem Int Ed Engl ; 62(9): e202212111, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36495310

RESUMO

Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Bactérias Gram-Negativas/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Positivas , Bactérias/metabolismo , Heme/química
12.
Angew Chem Int Ed Engl ; 62(31): e202304533, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37249408

RESUMO

The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 µM, making it the most effective LPL inhibitor reported to date.


Assuntos
Parasitos , Animais , Humanos , Proteômica , Plasmodium falciparum , Bactérias , Eritrócitos
13.
Chembiochem ; 23(16): e202200253, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713329

RESUMO

Novel strategies against multidrug-resistant bacteria are urgently needed in order to overcome the current silent pandemic. Manipulation of toxin production in pathogenic species serves as a promising approach to attenuate virulence and prevent infections. In many bacteria such as Staphylococcus aureus or Listeria monocyotgenes, serine protease ClpXP is a key contributor to virulence and thus represents a prime target for antimicrobial drug discovery. The limited stability of previous electrophilic warheads has prevented a sustained effect of virulence attenuation in bacterial culture. Here, we systematically tailor the stability and inhibitory potency of phenyl ester ClpXP inhibitors by steric shielding of the ester bond and fine-tuning the phenol leaving group. Out of 17 derivatives, two (MAS-19 and MAS-30) inhibited S. aureus ClpP peptidase and ClpXP protease activities by >60 % at 1 µM. Furthermore, the novel inhibitors did not exhibit pronounced cytotoxicity against human and bacterial cells. Unlike the first generation phenylester AV170, these molecules attenuated S. aureus virulence markedly and displayed increased stability in aqueous buffer compared to the previous benchmark AV170.


Assuntos
Antibacterianos , Endopeptidase Clp , Ésteres , Proteínas Hemolisinas , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/metabolismo , Ésteres/química , Ésteres/farmacologia , Proteínas Hemolisinas/metabolismo , Humanos , Staphylococcus aureus/efeitos dos fármacos , Virulência
14.
New Phytol ; 235(3): 1287-1301, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510806

RESUMO

Plants encode > 100 metalloproteases representing > 19 different protein families. Tools to study this large and diverse class of proteases have not yet been introduced into plant research. We describe the use of hydroxamate-based photoaffinity probes to explore plant proteomes for metalloproteases. We detected labelling of 23 metalloproteases in leaf extracts of the model plant Arabidopsis thaliana that belong to nine different metalloprotease families and localize to different subcellular compartments. The probes identified several chloroplastic FtsH proteases, vacuolar aspartyl aminopeptidase DAP1, peroxisomal metalloprotease PMX16, extracellular matrix metalloproteases and many cytosolic metalloproteases. We also identified nonproteolytic metallohydrolases involved in the release of auxin and in the urea cycle. Studies on tobacco plants (Nicotiana benthamiana) infected with the bacterial plant pathogen Pseudomonas syringae uncovered the induced labelling of PRp27, a secreted protein with implicated metalloprotease activity. PRp27 overexpression increases resistance, and PRp27 mutants lacking metal binding site are no longer labelled, but still show increased immunity. Collectively, these studies reveal the power of broad-range metalloprotease profiling in plants using hydroxamate-based probes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metaloproteases/metabolismo , Metaloproteínas/metabolismo , Doenças das Plantas , Pseudomonas syringae/metabolismo , Nicotiana/metabolismo
15.
EMBO Rep ; 21(5): e48204, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207244

RESUMO

During embryonic development, excitatory projection neurons migrate in the cerebral cortex giving rise to organised layers. Periventricular heterotopia (PH) is a group of aetiologically heterogeneous disorders in which a subpopulation of newborn projection neurons fails to initiate their radial migration to the cortex, ultimately resulting in bands or nodules of grey matter lining the lateral ventricles. Although a number of genes have been implicated in its cause, currently they only satisfactorily explain the pathogenesis of the condition for 50% of patients. Novel gene discovery is complicated by the extreme genetic heterogeneity recently described to underlie its cause. Here, we study the neurodevelopmental role of endothelin-converting enzyme-2 (ECE2) for which two biallelic variants have been identified in two separate patients with PH. Our results show that manipulation of ECE2 levels in human cerebral organoids and in the developing mouse cortex leads to ectopic localisation of neural progenitors and neurons. We uncover the role of ECE2 in neurogenesis, and mechanistically, we identify its involvement in the generation and secretion of extracellular matrix proteins in addition to cytoskeleton and adhesion.


Assuntos
Neurogênese , Heterotopia Nodular Periventricular , Movimento Celular/genética , Córtex Cerebral , Feminino , Humanos , Neurogênese/genética , Neurônios , Gravidez
16.
Angew Chem Int Ed Engl ; 61(24): e202117724, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35199904

RESUMO

Unprecedented bacterial targets are urgently needed to overcome the resistance crisis. Herein we systematically mine pyridoxal phosphate-dependent enzymes (PLP-DEs) in bacteria to focus on a target class which is involved in crucial metabolic processes. For this, we tailored eight pyridoxal (PL) probes bearing modifications at various positions. Overall, the probes exceeded the performance of a previous generation and provided a detailed map of PLP-DEs in clinically relevant pathogens including challenging Gram-negative strains. Putative PLP-DEs with unknown function were exemplarily characterized via in-depth enzymatic assays. Finally, we screened a panel of PLP binders for antibiotic activity and unravelled the targets of hit molecules. Here, an uncharacterized enzyme, essential for bacterial growth, was assigned as PLP-dependent cysteine desulfurase and confirmed to be inhibited by the marketed drug phenelzine. Our approach provides a basis for deciphering novel PLP-DEs as essential antibiotic targets along with corresponding ways to decipher small molecule inhibitors.


Assuntos
Antibacterianos , Piridoxal , Antibacterianos/farmacologia , Bactérias/metabolismo , Piridoxal/farmacologia , Fosfato de Piridoxal/metabolismo
17.
Angew Chem Int Ed Engl ; 61(29): e202201136, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35286003

RESUMO

Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.


Assuntos
DNA Catalítico , Proteômica
18.
Angew Chem Int Ed Engl ; 61(10): e202111085, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847623

RESUMO

Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. We combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells, allows to covalently trap substrate proteins of hClpP and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows identifying substrate dynamics upon application of external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Endopeptidase Clp/metabolismo , Mitocôndrias/enzimologia , Reagentes de Ligações Cruzadas/química , Endopeptidase Clp/química , Humanos , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Especificidade por Substrato
19.
J Proteome Res ; 20(1): 867-879, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210542

RESUMO

Staphylococcus aureus represents an opportunistic pathogen, which utilizes elaborate quorum sensing mechanisms to precisely control the expression and secretion of virulence factors. Previous studies indicated a role of the ClpXP proteolytic system in controlling pathogenesis. While detailed transcriptome data for S. aureus ClpP and ClpX knockout mutants is available, corresponding studies on the proteome and secretome level are largely lacking. To globally decipher the functional roles of ClpP and ClpX, we utilized S. aureus genomic deletion mutants of the corresponding genes for in-depth proteomic liquid chromatography-mass spectrometry (LC-MS)/MS analysis. These studies were complemented by an inactive ClpP active-site mutant strain to monitor changes solely depending on the activity and not the presence of the protein. A comparison of these strains with the wildtype revealed, e.g., downregulation of virulence, purine/pyrimidine biosynthesis, iron uptake, and stress response. Correspondingly, the integration of metabolomics data showed a reduction in the subset of purine and pyrimidine metabolite levels. Interestingly, a comparison between the ClpP knockout and ClpP S98A active-site mutant strains revealed characteristic differences. These results are not only of fundamental importance to understand the cellular role of ClpXP but also have implications for the development of novel virulence inhibitor classes.


Assuntos
Endopeptidase Clp , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Proteômica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
20.
Chembiochem ; 21(1-2): 235-240, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31487112

RESUMO

Caseinolytic protease P (ClpP) is a tetradecameric peptidase that assembles with chaperones such as ClpX to gain proteolytic activity. Acyldepsipeptides (ADEPs) are small-molecule mimics of ClpX that bind into hydrophobic pockets on the apical site of the complex, thereby activating ClpP. Detection of ClpP has so far been facilitated with active-site-directed probes which depend on the activity and oligomeric state of the complex. To expand the scope of ClpP labeling, we took a stepwise synthetic approach toward customized ADEP photoprobes. Structure-activity relationship studies with small fragments and ADEP derivatives paired with modeling studies revealed the design principles for suitable probe molecules. The derivatives were tested for activation of ClpP and subsequently applied in labeling studies of the wild-type peptidase as well as enzymes bearing mutations at the active site and an oligomerization sensor. Satisfyingly, the ADEP photoprobes provided a labeling readout of ClpP independent of its activity and oligomeric state.


Assuntos
Depsipeptídeos/química , Endopeptidase Clp/análise , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa