Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Biodegradation ; 35(2): 209-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37402058

RESUMO

Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone. In order to determine the causes for the faster biodegradation, the molecular weight, the crystallinity, the water uptake, the microbial biomass composition and scanning electron microscope images were assessed. The molecular weight of the PHB in the composites was lower than that of pure PHB while the crystallinity and microbial biomass composition were the same for all samples. A direct correlation of water uptake and crystallinity with biodegradation rate could not be observed. While the degradation of molecular weight of PHB during sample preparation contributed to the improvement of biodegradation, the main reason was attributed to biostimulation by the added biomass. The resulting enhancement of the biodegradation rate appears to be unique in the field of polymer biodegradation. The tensile strength was lowered, elongation at break remained constant and Young's modulus was increased compared to pure PHB.


Assuntos
Hidroxibutiratos , Poliésteres , Poli-Hidroxibutiratos , Ácido 3-Hidroxibutírico , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Biomassa , Água , Biodegradação Ambiental
2.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385513

RESUMO

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Assuntos
Hidroliases , Sequência de Aminoácidos , Hidroliases/química , Sítios de Ligação , Catálise
3.
PLoS Comput Biol ; 18(10): e1010633, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279274

RESUMO

Ancestral sequence reconstruction is a technique that is gaining widespread use in molecular evolution studies and protein engineering. Accurate reconstruction requires the ability to handle appropriately large numbers of sequences, as well as insertion and deletion (indel) events, but available approaches exhibit limitations. To address these limitations, we developed Graphical Representation of Ancestral Sequence Predictions (GRASP), which efficiently implements maximum likelihood methods to enable the inference of ancestors of families with more than 10,000 members. GRASP implements partial order graphs (POGs) to represent and infer insertion and deletion events across ancestors, enabling the identification of building blocks for protein engineering. To validate the capacity to engineer novel proteins from realistic data, we predicted ancestor sequences across three distinct enzyme families: glucose-methanol-choline (GMC) oxidoreductases, cytochromes P450, and dihydroxy/sugar acid dehydratases (DHAD). All tested ancestors demonstrated enzymatic activity. Our study demonstrates the ability of GRASP (1) to support large data sets over 10,000 sequences and (2) to employ insertions and deletions to identify building blocks for engineering biologically active ancestors, by exploring variation over evolutionary time.


Assuntos
Evolução Molecular , Mutação INDEL , Mutação INDEL/genética , Proteínas/genética , Evolução Biológica , Filogenia
4.
Chembiochem ; 23(10): e202200088, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35263023

RESUMO

The FeS cluster-dependent dihydroxyacid dehydratases (DHADs) and sugar acid-specific dehydratases (DHTs) from the ilvD/EDD superfamily are key enzymes in the bioproduction of a wide variety of chemicals. We analyzed [2Fe-2S]-dependent dehydratases in silico and in vitro, deduced functionally relevant sequence, structure, and activity relationships within the ilvD/EDD superfamily, and we propose a new classification based on their evolutionary relationships and substrate profiles. In silico simulations and analyses identified several key positions for specificity, which were experimentally investigated with site-directed and saturation mutagenesis. We thus increased the promiscuity of DHAD from Fontimonas thermophila (FtDHAD), showing >10-fold improved activity toward D-gluconate, and shifted the substrate preference of DHT from Paralcaligenes ureilyticus (PuDHT) toward shorter sugar acids (recording a six-fold improved activity toward the non-natural substrate D-glycerate). The successful elucidation of the role of important active site residues of the ilvD/EDD superfamily will further guide developments of this important biocatalyst for industrial applications.


Assuntos
Hidroliases , Catálise , Domínio Catalítico , Hidroliases/metabolismo
5.
Chemistry ; 28(44): e202200927, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35535733

RESUMO

There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic-resistant superbugs. Enzymes of the branched-chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti-microbial drug development. Dihydroxy-acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe-S cluster for catalytic activity and has recently also gained attention as a catalyst in cell-free enzyme cascades. Two types of Fe-S clusters have been identified in DHADs, i.e. [2Fe-2S] and [4Fe-4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000-fold increase with kcat as high as ∼6.7 s-1 ). Inductively-coupled plasma-optical emission spectroscopy (ICP-OES) measurements are consistent with the presence of [4Fe-4S] clusters in both enzymes. N-isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki =7.8 and 51.6 µM, respectively) and CjDHAD (Ki =32.9 and 35.1 µM, respectively). These compounds thus present suitable starting points for the development of novel anti-microbial chemotherapeutics.


Assuntos
Farmacorresistência Bacteriana , Hidroliases , Proteínas de Bactérias/química , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/enzimologia , Catálise , Hidroliases/química , Proteínas Ferro-Enxofre/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia
6.
Chembiochem ; 22(20): 2951-2956, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34033201

RESUMO

Racemic camphor and isoborneol are readily available as industrial side products, whereas (1R)-camphor is available from natural sources. Optically pure (1S)-camphor, however, is much more difficult to obtain. The synthesis of racemic camphor from α-pinene proceeds via an intermediary racemic isobornyl ester, which is then hydrolyzed and oxidized to give camphor. We reasoned that enantioselective hydrolysis of isobornyl esters would give facile access to optically pure isoborneol and camphor isomers, respectively. While screening of a set of commercial lipases and esterases in the kinetic resolution of racemic monoterpenols did not lead to the identification of any enantioselective enzymes, the cephalosporin Esterase B from Burkholderia gladioli (EstB) and Esterase C (EstC) from Rhodococcus rhodochrous showed outstanding enantioselectivity (E>100) towards the butyryl esters of isoborneol, borneol and fenchol. The enantioselectivity was higher with increasing chain length of the acyl moiety of the substrate. The kinetic resolution of isobornyl butyrate can be easily integrated into the production of camphor from α-pinene and thus allows the facile synthesis of optically pure monoterpenols from a renewable side-product.


Assuntos
Monoterpenos Bicíclicos/química , Cânfora/síntese química , Monoterpenos Bicíclicos/metabolismo , Burkholderia gladioli/enzimologia , Cânfora/química , Cânfora/metabolismo , Cefalosporinas/metabolismo , Estrutura Molecular , Rhodococcus/enzimologia , Serina Endopeptidases/metabolismo , Estereoisomerismo
7.
Appl Microbiol Biotechnol ; 105(8): 3159-3167, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33846823

RESUMO

Several thousand different terpenoid structures are known so far, and many of them are interesting for applications as pharmaceuticals, flavors, fragrances, biofuels, insecticides, or fine chemical intermediates. One prominent example is camphor, which has been utilized since ancient times in medical applications. Especially (-)-camphor is gaining more and more interest for pharmaceutical applications. Hence, a commercial reliable source is needed. The natural sources for (-)-camphor are limited, and the oxidation of precious (-)-borneol would be too costly. Hence, synthesis of (-)-camphor from renewable alpha-pinene would be an inexpensive alternative. As the currently used route for the conversion of alpha-pinene to camphor produces a mixture of both enantiomers, preferably catalytic methods for the separation of this racemate are demanded to yield enantiopure camphor. Enzymatic kinetic resolution is a sustainable way to solve this challenge but requires suitable enzymes. In this study, the first borneol dehydrogenase from Pseudomonas sp. ATCC 17453, capable of catalyzing the stereoselective reduction of camphor, was examined. By using a targeted enzyme engineering approach, enantioselective enzyme variants were created with E-values > 100. The best variant was used for the enzymatic kinetic resolution of camphor racemate, yielding 79% of (-)-camphor with an ee of > 99%. KEY POINTS: • Characterization of a novel borneol dehydrogenase (BDH) from P. putida. • Development of enantioselective BDH variants for the reduction of camphor. • Enzymatic kinetic resolution of camphor with borneol dehydrogenase.


Assuntos
Oxirredutases do Álcool , Cânfora , Engenharia de Proteínas , Pseudomonas/enzimologia , Oxirredução
8.
Angew Chem Int Ed Engl ; 60(26): 14701-14706, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33719153

RESUMO

Here we report a new robust nicotinamide dinucleotide phosphate cofactor analog (carba-NADP+ ) and its acceptance by many enzymes in the class of oxidoreductases. Replacing one ribose oxygen with a methylene group of the natural NADP+ was found to enhance stability dramatically. Decomposition experiments at moderate and high temperatures with the cofactors showed a drastic increase in half-life time at elevated temperatures since it significantly disfavors hydrolysis of the pyridinium-N-glycoside bond. Overall, more than 27 different oxidoreductases were successfully tested, and a thorough analytical characterization and comparison is given. The cofactor carba-NADP+ opens up the field of redox-biocatalysis under harsh conditions.


Assuntos
NADP/metabolismo , Oxirredutases/metabolismo , Biocatálise , Conformação Molecular , NADP/química , Oxirredução , Oxirredutases/química , Temperatura
9.
Angew Chem Int Ed Engl ; 60(38): 21056-21061, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34081832

RESUMO

The sustainable capture and conversion of carbon dioxide (CO2 ) is key to achieving a circular carbon economy. Bioelectrocatalysis, which aims at using renewable energies to power the highly specific, direct transformation of CO2 into value added products, holds promise to achieve this goal. However, the functional integration of CO2 -fixing enzymes onto electrode materials for the electrosynthesis of stereochemically complex molecules remains to be demonstrated. Here, we show the electricity-driven regio- and stereoselective incorporation of CO2 into crotonyl-CoA by an NADPH-dependent enzymatic reductive carboxylation. Co-immobilization of a ferredoxin NADP+ reductase and crotonyl-CoA carboxylase/reductase within a 2,2'-viologen-modified hydrogel enabled iterative NADPH recycling and stereoselective formation of (2S)-ethylmalonyl-CoA, a prospective intermediate towards multi-carbon products from CO2 , with 92±6 % faradaic efficiency and at a rate of 1.6±0.4 µmol cm-2 h-1 . This approach paves the way for realizing even more complex bioelectrocatalyic cascades in the future.

10.
Chembiochem ; 21(22): 3273-3281, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32656928

RESUMO

Propene is one of the most important starting materials in the chemical industry. Herein, we report an enzymatic cascade reaction for the biocatalytic production of propene starting from n-butanol, thus offering a biobased production from glucose. In order to create an efficient system, we faced the issue of an optimal cofactor supply for the fatty acid decarboxylase OleTJE , which is said to be driven by either NAD(P)H or H2 O2 . In the first system, we used an alcohol and aldehyde dehydrogenase coupled to OleTJE by the electron-transfer complex putidaredoxin reductase/putidaredoxin, allowing regeneration of the NAD+ cofactor. With the second system, we intended full oxidation of n-butanol to butyric acid, generating one equivalent of H2 O2 that can be used for the oxidative decarboxylation. As the optimal substrate is a long-chain fatty acid, we also tried to create an improved variant for the decarboxylation of butyric acid by using rational protein design. Within a mutational study with 57 designed mutants, we generated the mutant OleTV292I , which showed a 2.4-fold improvement in propene production in our H2 O2 -driven cascade system and reached total turnover numbers >1000.


Assuntos
1-Butanol/metabolismo , Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , 1-Butanol/química , Alcenos/química , Modelos Moleculares , Staphylococcaceae/enzimologia
11.
Metab Eng ; 61: 381-388, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771627

RESUMO

Paenibacillus polymyxa is a Gram-positive, non-pathogenic soil bacterium that has been extensively investigated for the production of R-,R-2,3-butanediol in exceptionally high enantiomeric purity. Rational metabolic engineering efforts to increase productivity and product titers were restricted due to limited genetic accessibility of the organism up to now. By use of CRISPR-Cas9 mediated genome editing, six metabolic mutant variants were generated and compared in batch fermentations for the first time. Downstream processing was facilitated by completely eliminating exopolysaccharide formation through the combined knockout of the sacB gene and the clu1 region, encoding for the underlying enzymatic machinery of levan and paenan synthesis. Spore formation was inhibited by deletion of spoIIE, thereby disrupting the sporulation cascade of P. polymyxa. Optimization of the carbon flux towards 2,3-butanediol was achieved by deletion of the lactate dehydrogenase ldh1 and decoupling of the butanediol dehydrogenase from its natural regulation via constitutive episomal expression. The improved strain showed 45 % increased productivity, reaching a final concentration of 43.8 g L-1 butanediol. A yield of 0.43 g g-1 glucose was achieved, accounting for 86 % of the theoretical maximum.


Assuntos
Butileno Glicóis/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Engenharia Metabólica , Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo
12.
Appl Microbiol Biotechnol ; 104(16): 7023-7035, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32566996

RESUMO

2-keto-3-L-arabinonate dehydratase (L-KdpD) and 2-keto-3-D-xylonate dehydratase (D-KdpD) are the third enzymes in the Weimberg pathway catalyzing the dehydration of respective 2-keto-3-deoxy sugar acids (KDP) to α-ketoglutaric semialdehyde (KGSA). The Weimberg pathway has been explored recently with respect to the synthesis of chemicals from L-arabinose and D-xylose. However, only limited work has been done toward characterizing these two enzymes. In this work, several new L-KdpDs and D-KdpDs were cloned and heterologously expressed in Escherichia coli. Following kinetic characterizations and kinetic stability studies, the L-KdpD from Cupriavidus necator (CnL-KdpD) and D-KdpD from Pseudomonas putida (PpD-KdpD) appeared to be the most promising variants from each enzyme class. Magnesium had no effect on CnL-KdpD, whereas increased activity and stability were observed for PpD-KdpD in the presence of Mg2+. Furthermore, CnL-KdpD was not inhibited in the presence of L-arabinose and L-arabinonate, whereas PpD-KdpD was inhibited with D-xylonate (I50 of 75 mM), but not with D-xylose. Both enzymes were shown to be highly active in the one-step conversions of L-KDP and D-KDP. CnL-KdpD converted > 95% of 500 mM L-KDP to KGSA in the first 2 h while PpD-KdpD converted > 90% of 500 mM D-KDP after 4 h. Both enzymes in combination were able to convert 83% of a racemic mixture of D,L-KDP (500 mM) after 4 h, with both enzymes being specific toward the respective stereoisomer. Key points • L-KdpDs and D-KdpDs are specific toward L- and D-KDP, respectively. • Mg2+affected activity and stabilities of D-KdpDs, but not of L-KdpDs. • CnL-KdpD and PpD-KdpD converted 0.5 M of each KDP isomer reaching 95 and 90% yield. • Both enzymes in combination converted 0.5 M racemic D,L-KDP reaching 83% yield.


Assuntos
Hidroliases/metabolismo , Polissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Açúcares/metabolismo , Biotransformação , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Hidroliases/genética , Cinética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Xilose/metabolismo
13.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947885

RESUMO

Successful directed evolution examples span a broad range of improved enzyme properties. Nevertheless, the most challenging step for each single directed evolution approach is an efficient identification of improved variants from a large genetic library. Thus, the development and choice of a proper high-throughput screening is a central key for the optimization of enzymes. The detection of low enzymatic activities is especially complicated when they lead to products that are present in the metabolism of the utilized genetic host. Coupled enzymatic assays based on colorimetric products have enabled the optimization of many of such enzymes, but are susceptible to problems when applied on cell extract samples. The purpose of this study was the development of a high-throughput screening for D-glycerate dehydratase activity in cell lysates. With the aid of an automated liquid handling system, we developed a high-throughput assay that relied on a pre-treatment step of cell extract prior to performing the enzymatic and assay reactions. We could successfully apply our method, which should also be transferable to other cell extract-based peroxidase assays, to identify an improved enzyme for the dehydration of D-glycerate.


Assuntos
Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos , Ácidos Glicéricos/metabolismo , Hidroliases/metabolismo , Engenharia de Proteínas , Sulfolobus solfataricus/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Evolução Molecular Direcionada/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/métodos , Peroxidase do Rábano Silvestre/metabolismo , Hidroliases/genética , Engenharia de Proteínas/métodos , Sulfolobus solfataricus/genética
14.
Beilstein J Org Chem ; 16: 1188-1202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550932

RESUMO

The preparation of activated carbon materials is discussed along selected examples of precursor materials, of available production and modification methods and possible characterization techniques. We evaluate the preparation methods for activated carbon materials with respect to its use as catalyst support and identify important parameters for metal loading. The considered carbon sources include coal, wood, agricultural wastes or biomass as well as ionic liquids, deep eutectic solvents or precursor solutions. The preparation of the activated carbon usually involves pre-treatment steps followed by physical or chemical activation and application dependent modification. In addition, highly porous materials can also be produced by salt templating or ultrasonic spray pyrolysis as well as by microwave irradiation. The resulting activated carbon materials are characterized by a variety of techniques such as SEM, FTIR, nitrogen adsorption, Boehm titrations, adsorption of phenol, methylene blue and iodine, TPD, CHNS/O elemental analysis, EDX, XPS, XRD and TGA.

15.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833352

RESUMO

Sinorhizobium meliloti produces multiple extracellular glycans, including among others, lipopolysaccharides (LPS), and the exopolysaccharides (EPS) succinoglycan (SG) and galactoglucan (GG). These polysaccharides serve cell protective roles. Furthermore, SG and GG promote the interaction of S. meliloti with its host Medicago sativa in root nodule symbiosis. ExoB has been suggested to be the sole enzyme catalyzing synthesis of UDP-galactose in S. meliloti (A. M. Buendia, B. Enenkel, R. Köplin, K. Niehaus, et al. Mol Microbiol 5:1519-1530, 1991, https://doi.org/10.1111/j.1365-2958.1991.tb00799.x). Accordingly, exoB mutants were previously found to be affected in the synthesis of the galactose-containing glycans LPS, SG, and GG and consequently, in symbiosis. Here, we report that the S. meliloti Rm2011 uxs1-uxe-apsS-apsH1-apsE-apsH2 (SMb20458-63) gene cluster directs biosynthesis of an arabinose-containing polysaccharide (APS), which contributes to biofilm formation, and is solely or mainly composed of arabinose. Uxe has previously been identified as UDP-xylose 4-epimerase. Collectively, our data from mutational and overexpression analyses of the APS biosynthesis genes and in vitro enzymatic assays indicate that Uxe functions as UDP-xylose 4- and UDP-glucose 4-epimerase catalyzing UDP-xylose/UDP-arabinose and UDP-glucose/UDP-galactose interconversions, respectively. Overexpression of uxe suppressed the phenotypes of an exoB mutant, evidencing that Uxe can functionally replace ExoB. We suggest that under conditions stimulating expression of the APS biosynthesis operon, Uxe contributes to the synthesis of multiple glycans and thereby to cell protection, biofilm formation, and symbiosis. Furthermore, we show that the C2H2 zinc finger transcriptional regulator MucR counteracts the previously reported CuxR-c-di-GMP-mediated activation of the APS biosynthesis operon. This integrates the c-di-GMP-dependent control of APS production into the opposing regulation of EPS biosynthesis and swimming motility in S. melilotiIMPORTANCE Bacterial extracellular polysaccharides serve important cell protective, structural, and signaling roles. They have particularly attracted attention as adhesives and matrix components promoting biofilm formation, which significantly contributes to resistance against antibiotics. In the root nodule symbiosis between rhizobia and leguminous plants, extracellular polysaccharides have a signaling function. UDP-sugar 4-epimerases are important enzymes in the synthesis of the activated sugar substrates, which are frequently shared between multiple polysaccharide biosynthesis pathways. Thus, these enzymes are potential targets to interfere with these pathways. Our finding of a bifunctional UDP-sugar 4-epimerase in Sinorhizobium meliloti generally advances the knowledge of substrate promiscuity of such enzymes and specifically of the biosynthesis of extracellular polysaccharides involved in biofilm formation and symbiosis in this alphaproteobacterium.


Assuntos
Carboidratos Epimerases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/metabolismo , Carboidratos Epimerases/genética , Sinorhizobium meliloti/genética , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilose/metabolismo
16.
Macromol Rapid Commun ; 40(11): e1800903, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30892749

RESUMO

The synthesis and polymerization of two ß-lactams and two ε-lactams derived from the terpenes α-pinene and (+)-3-carene are reported. The new biopolymers can be considered as polyamide 2 (PA2) and polyamide 6 (PA6)-types with aliphatic stereoregular side chains, which lead to remarkable new properties. The macromolecules are investigated by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and infrared (IR). The (+)-3-carene-derived PA6-type is of particular interest, since it reaches a molecular weight of over 30 kDa, which is the highest value for lactam-based polyamides derived from terpenes reported to date. Additionally, a glass transition temperature (Tg ) of 120 °C is observed, surpassing the glass transition temperature of PA6 by 60 °C. The absence of a melting point (Tm ) indicates high amorphicity, another novelty for terpene-based polyamides, which might give transparent bio-polyamides access to new fields of application.


Assuntos
Lactamas/química , Lactamas/síntese química , Monoterpenos/química , Nylons/química , Terpenos/química , Monoterpenos Bicíclicos , Peso Molecular , Polimerização , Temperatura , Temperatura de Transição
17.
Proc Natl Acad Sci U S A ; 113(8): E958-67, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26842837

RESUMO

Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.


Assuntos
Alquil e Aril Transferases/química , Modelos Moleculares , Análise de Sequência de Proteína/métodos , Motivos de Aminoácidos , Catálise , Domínio Catalítico
18.
Anal Chem ; 90(4): 2526-2533, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29307190

RESUMO

High-throughput screening (HTS) methods have become decisive for the discovery and development of new biocatalysts and their application in numerous fields. Sulfatases, a broad class of biocatalysts that hydrolyze sulfate esters, are involved in diverse relevant cellular functions (e.g., signaling and hormonal regulation) and are therefore gaining importance, particularly in the medical field. Additionally, various technical applications have been recently devised. One of the major challenges in the field of enzyme development is the sensitive and high-throughput detection of the actual product of the biocatalyst of interest without the need for chromophore analogues. Addressing this issue, a colorimetric assay for sulfatases was developed and validated for detecting sulfate through a two-step enzymatic cascade, with a linear detection range of 3.3 (limit of detection) up to 250 µM. The procedure is compatible with relevant compounds employed in sulfatase reactions, including cosolvents, cations, and buffers. The assay was optimized and performed as part of a 96-well screening workflow that included bacterial growth, heterologous sulfatase expression, cell lysis, sulfate ester hydrolysis, inactivation of cell lysate, and colorimetric sulfate determination. With this procedure, the activity of an aryl and an alkyl sulfatase could be confirmed and validated. Overall, this assay provides a simple and fast alternative for screening and engineering sulfatases from DNA libraries (e.g., using metagenomics) with medical or synthetic relevance.


Assuntos
Colorimetria , Escherichia coli/enzimologia , Ensaios de Triagem em Larga Escala , Sulfatases/análise , Sulfatos/análise , Escherichia coli/citologia , Sulfatases/metabolismo , Sulfatos/metabolismo
19.
Chembiochem ; 18(19): 1944-1949, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28752634

RESUMO

Oxidoreductases are attractive biocatalysts that convert achiral substrates into products of higher value, but they are also for the most part dependent on nicotinamide cofactors. Recently, biomimetic nicotinamide derivatives have received attention as less costly alternatives to natural cofactors. However, recycling of biomimetics is still challenging because there are only limited opportunities. Here, we have characterized various biomimetic cofactors with regard to stability and redox potentials to find the best alternative to natural cofactors. Further, the cofactor spectrum of NADH oxidase from Lactobacillus pentosus (LpNox) could be expanded, and the enzymatic activity was also compared to activities with different small-molecule catalysts. As a result, we succeeded in identifying several strategies for regeneration of oxidized biomimetics.


Assuntos
Materiais Biomiméticos/metabolismo , Lactobacillus pentosus/enzimologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Niacinamida/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Niacinamida/síntese química , Niacinamida/química , Oxirredução
20.
Metab Eng ; 40: 5-13, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28238759

RESUMO

α-Ketoglutarate (aKG) represents a central intermediate of cell metabolism. It is used for medical treatments and as a chemical building block. Enzymatic cascade reactions have the potential to sustainably synthesize this natural product. Here we report a systems biocatalysis approach for an in vitro reaction set-up to produce aKG from glucuronate using the oxidative pathway of uronic acids. Because of two dehydrations, a decarboxylation, and reaction conditions favoring oxidation, the pathway is driven thermodynamically towards complete product formation. The five enzymes (including one for cofactor recycling) were first investigated individually to define optimal reaction conditions for the cascade reaction. Then, the kinetic parameters were determined under these conditions and the inhibitory effects of substrate, intermediates, and product were evaluated. As cofactor supply is critical for the cascade reaction, various set-ups were tested: increasing concentrations of the recycling enzyme, different initial NAD+ concentrations, as well as the use of a bubble reactor for faster oxygen diffusion. Finally, we were able to convert 10gL-1 glucuronate with 92% yield of aKG within 5h. The maximum productivity of 2.8gL-1 h-1 is the second highest reported in the biotechnological synthesis of aKG.


Assuntos
Vias Biossintéticas/fisiologia , Proteínas de Escherichia coli/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Engenharia Metabólica/métodos , Ácidos Urônicos/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Melhoramento Genético/métodos , Ácidos Cetoglutáricos/isolamento & purificação , Redes e Vias Metabólicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa