Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612585

RESUMO

Hypercortisolism is known to affect platelet function. However, few studies have approached the effect of exogenous cortisol on human platelets, and the results obtained are conflicting and unconvincing. In this study, the effect of exogenous cortisol on several parameters indicative of oxidative status in human platelets has been analysed. We have found that cortisol stimulates ROS production, superoxide anion formation, and lipid peroxidation, with these parameters being in strict correlation. In addition, cortisol decreases GSH and membrane SH-group content, evidencing that the hormone potentiates oxidative stress, depleting platelet antioxidant defence. The involvement of src, syk, PI3K, and AKT enzymes in oxidative mechanisms induced by cortisol is shown. The main sources of ROS in cells can include uncontrolled increase of NADPH oxidase activity and uncoupled aerobic respiration during oxidative phosphorylation. Both mechanisms seem to be involved in ROS formation induced by cortisol, as the NADPH oxidase 1 inhibitor 2(trifluoromethyl)phenothiazine, and rotenone and antimycin A, complex I and III inhibitor, respectively, significantly reduce oxidative stress. On the contrary, the NADPH oxidase inhibitor gp91ds-tat, malate and NaCN, complex II and IV inhibitor, respectively, have a minor effect. It is likely that, in human platelets, oxidative stress induced by cortisol can be associated with venous and arterial thrombosis, greatly contributing to cardiovascular diseases.


Assuntos
Hidrocortisona , Estresse Oxidativo , Humanos , Hidrocortisona/farmacologia , Espécies Reativas de Oxigênio , Plaquetas , NADPH Oxidases
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731825

RESUMO

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Assuntos
Amidas , Antineoplásicos , Antioxidantes , Proliferação de Células , Hidrazonas , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Células HeLa
3.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792163

RESUMO

To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs 1-4 have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in meta and para positions of catechol portion (5APs 1); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs 2); (iii) a more flexible alkyl chain was inserted on N1 position (5APs 3); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs 4). All new derivatives 1-4 have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties. In addition, in silico pharmacokinetics, drug-likeness properties, and toxicity have been calculated. 5APs 1 emerged to be promising anti-proliferative agents, able to suppress the growth of specific cancer cell lines. Furthermore, derivatives 3 remarkably inhibited ROS production in platelets and 5APs 4 showed interesting in vitro radical scavenging properties. Overall, the collected results further confirm the pharmaceutical potentials of this class of compounds and support future studies for the development of novel anti-proliferative and antioxidant agents.


Assuntos
Antineoplásicos , Antioxidantes , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular
4.
J Cell Biochem ; 124(1): 46-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36260649

RESUMO

Reactive oxygen species (ROS) are known to regulate platelet activation. Since endocannabinoids behave as platelet agonists, we investigated the effect of two endocannabinoids, 2-arachidonoylglycerol (2AG) and anandamide (AEA) on the oxidative status of human platelets. We have demonstrated that 2AG and AEA stimulate ROS production, superoxide anion formation and lipid peroxidation. The effect is dose and time dependent and mainly occurs through the involvement of cannabinoid receptor 1 (CB1) since all tested parameters are greatly reduced by SR141716, the CB1 specific inhibitor. The specific inhibitor of cannabinoid receptor 2 (CB2) SR144528 produces a very small inhibition. The involvement of syk/PI3K/AKT/mTor pathway in oxidative stress induced by endocannabinoids is shown. Nicotinamide adenine dinucleotide phosphate oxidase seems to be poorly involved in the endocannabinoids effect. Concerning the aerobic metabolism, it has been demonstrated that endocannabinoids reduce the oxygen consumption and adenosine triphosphate synthesis, both in the presence of pyruvate + malate or succinate. In addition, endocannabinoids inhibit the activity of respiratory complexes II, III and IV and increase the activity of respiratory complex I. The endocannabinoids effect on aerobic metabolism seems to be also a CB1 mediated mechanism. Thus, in human platelets oxidative stress induced by endocannabinoids, mainly generated in the respiratory chain through the activation of complex I and the inhibition of complex II, III and IV, may lead to thrombotic events, contributing to cardiovascular diseases.


Assuntos
Plaquetas , Endocanabinoides , Humanos , Endocanabinoides/farmacologia , Espécies Reativas de Oxigênio , Fosfatidilinositol 3-Quinases , Alcamidas Poli-Insaturadas/farmacologia , Estresse Oxidativo , Receptores de Canabinoides , Receptor CB1 de Canabinoide
5.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641279

RESUMO

(1) Background: different previously synthesized pyrazoles and imidazo-pyrazoles showed interesting anti-angiogenic action, being able to interfere with ERK1/2, AKT and p38MAPK phosphorylation in different manners and with different potency; (2) Methods: here, a new small compound library, endowed with the same differently decorated chemical scaffolds, has been synthetized to obtain new agents able to inhibit different pathways involved in inflammation, cancer and human platelet aggregation. (3) Results: most of the new synthesized derivatives resulted able to block ROS production, platelet aggregation and p38MAPK phosphorylation both in platelets and Human Umbilical Vein Endothelial cells (HUVEC). This paves the way for the development of new agents with anti-angiogenic activity.


Assuntos
Anti-Inflamatórios/síntese química , Imidazóis/química , Pirazóis/química , Bibliotecas de Moléculas Pequenas/síntese química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
6.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085423

RESUMO

Several anti-inflammatory agents based on pyrazole and imidazopyrazole scaffolds and a large library of substituted catechol PDE4D inhibitors were reported by us in the recent past. To obtain new molecules potentially able to act on different targets involved in inflammation onset we designed and synthesized a series of hybrid compounds by linking pyrazole and imidazo-pyrazole scaffolds to differently decorated catechol moieties through an acylhydrazone chain. Some compounds showed antioxidant activity, inhibiting reactive oxygen species (ROS) elevation in neutrophils, and a good inhibition of phosphodiesterases type 4D and, particularly, type 4B, the isoform most involved in inflammation. In addition, most compounds inhibited ROS production also in platelets, confirming their ability to exert an antiinflammatory response by two independent mechanism. Structure-activity relationship (SAR) analyses evidenced that both heterocyclic scaffolds (pyrazole and imidazopyrazole) and the substituted catechol moiety were determinant for the pharmacodynamic properties, even if hybrid molecules bearing to the pyrazole series were more active than the imidazopyrazole ones. In addition, the pivotal role of the catechol substituents has been analyzed. In conclusion the hybridization approach gave a new serie of multitarget antiinflammatory compounds, characterized by a strong antioxidant activity in different biological targets.


Assuntos
Anti-Inflamatórios/farmacologia , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Humanos , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxirredução , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
7.
Biol Cell ; 110(5): 97-108, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29537672

RESUMO

BACKGROUND INFORMATION: Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS: Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the ß subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS: Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE: This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.


Assuntos
Plaquetas/fisiologia , Metabolismo Energético , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise , Voluntários Saudáveis , Humanos , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxirredução
8.
J Cell Biochem ; 119(1): 876-884, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661046

RESUMO

The objective of this study was to determine whether AMPK is activated by 2-arachidonoylglycerol (2-AG) and participates to the cytoskeleton control in human platelets. We found that 2-AG stimulates the AMPKα activation through a Ca2+ /Calmodulin-dependent pathway as the specific inhibition of the CaMKKß by STO-609 inhibits the AMPKα phosphorylation/activation. Moreover, the CaMKKß/AMPKα pathway activated by 2-AG is involved in the phosphorylation of cofilin, vasodilator stimulated phosphoprotein (VASP), and myosin light chain (MLCs). These proteins participate to actin cytoskeletal remodelling during aggregation. We found that the phosphorylation/activation inhibition of these proteins is associated with a significant reduction in actin polymerization, aggregation, ATP, and α-granule secretion. Finally, AMPKα activation, Cofilin, VASP, and MLCs phosphorylation are significantly reduced by SR141716, the specific inhibitor of type 1 cannabinoid (CB1) receptor, suggesting that the CB1 receptor is involved in the 2-AG effect. In conclusion, we have shown that the CaMKKß/AMPKα pathway is activated by 2-AG in human platelets and controls the phosphorylation of key proteins involved in actin polymerization and aggregation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Araquidônicos/farmacologia , Plaquetas/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Benzimidazóis/farmacologia , Plaquetas/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Cicloeximida/farmacologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Cadeias Leves de Miosina/metabolismo , Naftalimidas/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Transdução de Sinais/efeitos dos fármacos
9.
Biol Chem ; 398(12): 1335-1346, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28779561

RESUMO

We have compared the effect of three legume lectins, wheat germ agglutinin (WGA), Phaseolus vulgaris agglutinin (PHA) and Lens culinaris agglutinin (LCA), on the function of human platelets. We have found that WGA is more active than PHA in stimulating platelet activation/aggregation, while LCA has no effect. Studies on the mechanisms involved show that WGA and PHA induce phosphorylation/activation of PLCγ2 and increase [Ca2+]i. For the first time, it has been shown that Src/Syk pathway, the adapter protein SLP-76 and the exchange protein VAV, participate in the PLCγ2 activation by these lectins. Moreover WGA and PHA stimulate the PI3K/AKT pathway. PI3K, through its product phosphatidylinositol-3,4,5-trisphosphate activates Bruton's tyrosine kinase (BTK) and contributes to PLCγ2 activation. In conclusion, our findings suggest that PLCγ2 activation induced by WGA and PHA is regulated by Src/Syk and by PI3K/BTK pathways through their concerted action.


Assuntos
Fito-Hemaglutininas/farmacologia , Lectinas de Plantas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Aglutininas do Germe de Trigo/farmacologia , Relação Dose-Resposta a Droga , Humanos , Fosfolipase C gama/metabolismo , Fito-Hemaglutininas/química , Lectinas de Plantas/química , Relação Estrutura-Atividade , Aglutininas do Germe de Trigo/química
10.
J Cell Biochem ; 117(5): 1240-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26460717

RESUMO

We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122, or the PKC specific inhibitor GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP intracellular level.


Assuntos
Ácidos Araquidônicos/farmacologia , Plaquetas/efeitos dos fármacos , AMP Cíclico/metabolismo , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes , Agonistas de Receptores de Canabinoides/farmacologia , Células Cultivadas , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Estrenos/farmacologia , Ácidos Graxos Insaturados , Humanos , Hidrazinas/farmacologia , Immunoblotting , Indóis/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Maleimidas/farmacologia , Milrinona/farmacologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Pirrolidinonas/farmacologia , Receptores de Tromboxanos/antagonistas & inibidores , Receptores de Tromboxanos/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
11.
Cells ; 12(13)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443836

RESUMO

Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.


Assuntos
Plaquetas , Glicólise , Humanos , Plaquetas/metabolismo , Ativação Plaquetária , Metabolismo Energético , Inflamação/metabolismo
12.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829775

RESUMO

In the effort to obtain multitarget compound interfering with inflammation, oxidative stress, and tumorigenesis, we synthesized a small library of pyrazole compounds, selecting 4a, 4f, and 4g as the most noteworthy being IC50 against platelet ROS production induced by thrombin of about 10 µM. The in vitro antioxidant potential of the three molecules was evaluated, and since they show a remarkable antioxidative activity, their effect on several parameter indicative of oxidative status and on the efficiency of the aerobic metabolism was tested. The three molecules strongly inhibit superoxide anion production, lipid peroxidation, NADPH oxidase activity and almost restore the oxidative phosphorylation efficiency in thrombin-stimulated platelet, demonstrating a protective effect against oxidative stress. This effect was confirmed in endothelial cell in which 4a, 4f, and 4g show an interesting inhibition activity on H2O2-stimulated EA.hy926 cells. At last, antiproliferative activity of 4a, 4f, and 4g was submitted to a large screening at the NCI. The molecules show interesting anticancer activity, among them the most remarkable is 4g able to strongly inhibit the proliferation of both solid tumor and leukemia cells lines. In conclusion, all the three newly synthetized pyrazoles show remarkable antioxidant and antiproliferative effect worthy of further study.

13.
ChemMedChem ; 18(17): e202300252, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366115

RESUMO

In previous studies, we synthesized different imidazo-pyrazoles 1 and 2 with interesting anticancer, anti-angiogenic and anti-inflammatory activities. To further extend the structure-activity relationships of imidazo-pyrazole scaffold and to identify novel antiproliferative/anti-inflammatory agents potentially active with multi-target mechanisms, a library of compounds 3-5 has been designed and synthesized. The chemical modifications characterizing the novel derivatives include: i) decoration of the catechol ring with groups with different electronic, steric and lipophilic properties (compounds 3); ii) insertion of a methyl group on C-6 of imidazo-pyrazole scaffold (compounds 4); iii) shift of the acylhydrazonic substituent from position 7 to 6 of the imidazo-pyrazole substructure (compounds 5). All synthesized compounds were tested against a panel of cancer and normal cell lines. Derivatives 3 a, 3 e, 4 c, 5 g and 5 h showed IC50 values in the low micromolar range against selected tumor cell lines and proved to have antioxidant properties, being able to inhibit ROS production in human platelet. In silico calculation predicted favourable drug-like and pharmacokinetic properties for the most promising compounds. Furthermore, molecular docking and molecular dynamic simulations suggested the ability of most active derivative 3 e to interact with colchicine binding site in the polymeric tubulin α/tubulin ß/stathmin4 complex.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Simulação de Acoplamento Molecular , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Pirazóis/farmacologia , Pirazóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células
14.
J Hum Hypertens ; 36(3): 308-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758349

RESUMO

The aim of our study was to evaluate the prevalence, awareness, and control of hypertension in an apparently healthy company population. We conducted a cross-sectional study on a total sample of 2058 individuals with a mean age of 38 ± 9 years, enrolled for the first time to the Ferrari corporate wellness program "Formula Benessere". Hypertension was defined as systolic blood pressure (SBP) level ≥140 mmHg or diastolic BP (DBP) ≥90 mmHg or use of antihypertensive medication, whereas BP control was defined as BP level <130/80 mmHg. All 2058 participants were divided into three groups based on age: Group 1 aged <40 years (n = 1177, 57%), Group 2 aged 40-50 years (n = 627, 30%), and Group 3 aged >50 years (n = 254, 13%). Four-hundred and one subjects had BP levels ≥130/80 mmHg (19.5%). Two-hundred and sixty-one individuals (12.7%) had high-normal BP values and 140 subjects had rest SBP ≥140 mmHg and/or DBP ≥90 mmHg (6,8%), of which 41 (29.3%) with grade 2 hypertension. In the overall population, 259 individuals (12.5%) were affected by hypertension, the prevalence increasing with age. Only a minority (51%) was aware of being hypertensive and already treated with antihypertensive medications (45.9%). An adequate BP control was achieved in only 57% of subjects who received BP-lowering therapy. Corporate wellness programs may represent an essential tool in identifying apparently healthy subjects with an inadequate control of cardiovascular (CV) risk factors, such as hypertension. These preventive programs in the workplace may help to improve and spread primary CV prevention at the population level.


Assuntos
Anti-Hipertensivos , Hipertensão , Adulto , Anti-Hipertensivos/uso terapêutico , Estudos Transversais , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pessoa de Meia-Idade , Prevalência , Prevenção Primária
15.
High Blood Press Cardiovasc Prev ; 29(1): 81-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34822139

RESUMO

AIM: To evaluate the incidence and clinical significance of impaired cardiorespiratory fitness (CRF) and the association with baseline blood pressure (BP) levels and hypertensive response to exercise (HRE). METHODS: A cross-sectional study was conducted on a total sample of 2058 individuals with a mean age of 38 ± 9 years, enrolled for the first time at the Ferrari corporate wellness program "Formula Benessere", including a maximal exercise stress testing (EST). BP and heart rate (HR) values were obtained from EST at rest, during exercise and recovery time. CRF was arbitrarily classified according to estimated VO2 max in optimal, normal, mildly and moderately reduced. RESULTS: One-hundred and thirty-nine individuals of 2058 (6.7%) showed a moderate CRF reduction assessed by EST. Subjects with elevated resting and/or exercise BP showed a worse CRF than those with normal BP levels, also after the adjustment for age, sex, body mass index, smoking habits, peak SBP and DBP. Seventy-seven individuals (3.7%) showed an HRE during EST, with normal baseline BP levels. CONCLUSION: About 7% of a corporate population showed a significantly reduced CRF, assessed by EST. Individuals with lower levels of CRF have higher resting and/or peak exercising BP values after adjusting for co-variables. This study expands the role of EST outside of traditional ischemic CVD evaluation, towards the assessment of reduced CRF and HRE in the general population, as a possible not evaluated CV risk factor.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Adulto , Pressão Sanguínea , Estudos Transversais , Exercício Físico , Teste de Esforço , Humanos , Pessoa de Meia-Idade , Aptidão Física
16.
J Cell Biochem ; 112(10): 2794-802, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21608016

RESUMO

The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) is described as a platelet agonist able to induce aggregation and to increase intracellular calcium. In the present report we have confirmed these data and demonstrated that the inhibitor of p38MAPK SB203580 and the inhibitor of cPLA(2) metabolism ETYA affect both these parameters. Thus, we aimed to define the role of p38MAPK/cytosolic phospholipase A(2) (cPLA(2)) pathway in 2-AG-induced human platelet activation. p38MAPK activation was assayed by phosphorylation. cPLA(2) activation was assayed by phosphorylation and as arachidonic acid release and thromboxane B(2) formation. It was shown that 2-AG in a dose- and time-dependent manner activates p38MAPK peaking at 10 µM after 1 min of incubation. The 2-AG effect on p38MAPK was not impaired by apyrase, indomethacin or RGDS peptide but it was significantly reduced by SR141716, specific inhibitor of type-1 cannabinoid receptor and unaffected by the specific inhibitor of type-2 cannabinoid receptor SR144528. Moreover, the incubation of platelets with 2-AG led to the phosphorylation of cPLA(2) and its activation. Platelet pretreatment with SB203580, inhibitor of p38MAPK, abolished both cPLA(2) phosphorylation and activation. In addition SR141716 strongly impaired cPLA(2) phosphorylation, arachidonic acid release and thromboxane B(2) formation, whereas SR144528 did not change these parameters. Finally platelet stimulation with 2-AG led to an increase in free oxygen radical species. In conclusion, data provide insight into the mechanisms involved in platelet activation by 2-AG, indicating that p38MAPK/cPLA(2) pathway could play a relevant role in this complicated process.


Assuntos
Ácidos Araquidônicos/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Glicerídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apirase/farmacologia , Ácido Araquidônico/metabolismo , Endocanabinoides , Humanos , Imidazóis/farmacologia , Técnicas In Vitro , Indometacina/farmacologia , Oligopeptídeos/farmacologia , Fosfolipases A2 Citosólicas , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio , Rimonabanto , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
J Cell Biochem ; 112(3): 924-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21328466

RESUMO

In this study the effect of the endocannabinoid anandamide on platelet nitric oxide (NO)/cGMP pathway was investigated. Data report that anandamide in a dose-and time-dependent manner increased NO and cGMP levels and stimulated endothelial nitric oxide synthase (eNOS) activity. These parameters were significantly reduced by LY294002, selective inhibitor of PI3K and by MK2206, specific inhibitor of AKT. Moreover anandamide stimulated both eNOSser1177 and AKTser473 phosphorylation. Finally the anandamide effect on NO and cGMP levels, eNOS and AKT phosphorylation/activation were inhibited by SR141716, specific cannabinoid receptor 1 antagonist, supporting the involvement of anandamide binding to this receptor. Overall data of this report indicate that low concentrations of anandamide, through PI3K/AKT pathway activation, stimulates eNOS activity and increases NO levels in human platelets. In such way anandamide contributes to extend platelet survival.


Assuntos
Ácidos Araquidônicos/farmacologia , Plaquetas/efeitos dos fármacos , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Citrulina/metabolismo , Endocanabinoides , Ensaios Enzimáticos , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Biochim Biophys Acta ; 1791(11): 1084-92, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19615463

RESUMO

Arachidonic acid can act as a second messenger regulating many cellular processes among which is nitric oxide (NO) formation. The aim of the present study was to investigate the molecular mechanisms involved in the arachidonic acid effect on platelet NO level. Thus NO, cGMP and superoxide anion level, the phosphorylation status of nitric oxide synthase, the protein kinase C (PKC), and NADPH oxidase activation were measured. Arachidonic acid dose-dependently reduced NO and cGMP level. The thromboxane A(2) mimetic U46619 behaved in a similar way. The arachidonic acid or U46619 effect on NO concentration was abolished by the inhibitor of the thromboxane A(2) receptor SQ29548 and partially reversed by the PKC inhibitor GF109203X or by the phospholipase C pathway inhibitor U73122. Moreover, it was shown that arachidonic acid activated PKC and decreased nitric oxide synthase (eNOS) activities. The phosphorylation of the inhibiting eNOSthr495 residue mediated by PKC was increased by arachidonic acid, while no changes at the activating ser1177 residue were shown. Finally, arachidonic acid induced NADPH oxidase activation and superoxide anion formation. These effects were greatly reduced by GF109203X, U73122, and apocynin. Likely arachidonic acid reducing NO bioavailability through all these mechanisms could potentiate its platelet aggregating power.


Assuntos
Ácido Araquidônico/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Óxido Nítrico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Plaquetas/enzimologia , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , GMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , NADPH Oxidases/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Superóxidos/metabolismo
19.
Redox Biol ; 32: 101456, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32063518

RESUMO

Previously we have shown that wheat germ agglutinin (WGA) and, with minor potency, Phaseolus vulgaris agglutinin (PHA), but not lens culinarian agglutinin (LCA), induce platelet aggregation, through the PLCÆ´2 activation by the concerted action of src/syk and PI3K/BTK pathways. In this study, we have investigated platelet oxidative stress induced by lectins. Several parameters indicative of oxidative stress, such as reactive oxygen species (ROS), superoxide anion, lipid peroxidation and the efficiency of the aerobic metabolism, have been measured. It was found that ROS, superoxide anion formation and lipid peroxidation are significantly increased upon platelet treatment with WGA and PHA while LCA is ineffective. WGA is always more effective than PHA in all experimental conditions tested. In addition, the involvement of NADPH oxidase 1, syk and PI3K in oxidative stress induced by WGA and PHA has been shown. Concerning the lectins effect on aerobic metabolism, WGA and PHA, but not LCA, act as uncoupling agents, determining an increase of oxygen consumption and a decrease of ATP synthesis, with a consequent decrease of P/O value. These results are confirmed by the impairment of platelets proton gradient formation, evaluated by membrane potential, in platelets treated with WGA and PHA. In conclusion lectins, especially WGA, induce oxidative stress in platelets and decrease energy availability through modifications of membrane structure leading to the inefficiency of the aerobic machinery that steers platelets toward death as suggested by the decreased metabolic activity of platelets and the increased lactic dehydrogenase release.


Assuntos
Plaquetas , Lectinas , Plaquetas/metabolismo , Humanos , Lectinas/metabolismo , Estresse Oxidativo , Agregação Plaquetária , Aglutininas do Germe de Trigo
20.
Nitric Oxide ; 20(2): 104-13, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19100855

RESUMO

Hyperhomocysteinaemia has been associated with increased risk of thrombosis and atherosclerosis. Homocysteine produces endothelial injury and stimulates platelet aggregation. Several molecular mechanisms related to these effects have been elucidated. The study aimed to deeply investigate the homocysteine effect on nitric oxide formation in human platelets. The homocysteine-induced changes on nitric oxide, cGMP, superoxide anion levels and nitrotyrosine formation were evaluated. The enzymatic activity and the phosphorylation status of endothelial nitric oxide synthase (eNOS) at thr495 and ser1177 residues were measured. The protein kinase C (PKC), assayed by immunofluorescence confocal microscopy technique and by phosphorylation of p47pleckstrin, and NADPH oxidase activation, tested by the translocation to membrane of the two cytosolic subunits p47(phox) and p67(phox), were assayed. Results show that homocysteine reduces platelet nitric oxide and cGMP levels. The inhibition of eNOS activity and the stimulation of NADPH oxidase primed by PKC appear to be involved. PKC stimulates the eNOS phosphorylation of the negative regulatory residue thr495 and the dephosphorylation of the positive regulatory site ser1177. GF109203X and U73122, PKC and phospholipase Cgamma2 pathway inhibitors, respectively, reverse this effect. Moreover, homocysteine stimulates superoxide anion elevation and NADPH oxidase activation. These effects are significantly decreased by GF109203X and U73122, suggesting the involvement of PKC in NADPH oxidase activation. Homocysteine induces formation of the peroxynitrite biomarker nitrotyrosine. Taken together these results suggest that the homocysteine-mediated responses leading to nitric oxide impairment are mainly coupled to PKC activation. Thus homocysteine stimulates platelet aggregation and decreases nitric oxide bioavailability.


Assuntos
Plaquetas/metabolismo , Homocisteína/metabolismo , Óxido Nítrico/sangue , Proteína Quinase C/sangue , Análise de Variância , Plaquetas/citologia , Citrulina/sangue , GMP Cíclico/sangue , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Homocisteína/farmacologia , Humanos , Microscopia de Fluorescência , NADPH Oxidases/sangue , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Superóxidos/sangue , Tirosina/análogos & derivados , Tirosina/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa