Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Mater ; 23(8): 1085-1092, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849556

RESUMO

Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2- species, which cap the MXene surface with an O-B-O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g-1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.

2.
Nano Lett ; 23(13): 6010-6017, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387593

RESUMO

Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).

3.
Opt Express ; 31(26): 43048-43056, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178407

RESUMO

Structural color filters use nano-sized elements to selectively transmit incident light, offering a scalable, economical, and environmentally friendly alternative to traditional pigment- and dye-based color filters. However, their structural nature makes their optical response prone to spectral shifts whenever the angle of incidence varies. We address this issue by introducing a conformal VO2 layer onto bare aluminum structural color filters. The insulator-metal transition of VO2 compensated the spectral shift of the filter's transmission at a 15° tilt with 80% efficiency. Unlike solutions that require adjustment of the filter's geometry, this method is versatile and suitable also for existing structural filters. Our findings also establish tunable materials in general as a possible solution for angle-dependent spectral shifts.

4.
Nano Lett ; 21(17): 7244-7251, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433259

RESUMO

The key information about any nanoscale system relates to the orientations and conformations of its parts. Unfortunately, these details are often hidden below the diffraction limit, and elaborate techniques must be used to optically probe them. Here we present imaging of the 3D rotation motion of metal nanorods, restoring the distinct nanorod orientations in the full extent of azimuthal and polar angles. The nanorods imprint their 3D orientation onto the geometric phase and space-variant polarization of the light they scatter. We manipulate the light angular momentum and generate optical vortices that create self-interference images providing the nanorods' angles via digital processing. After calibration by scanning electron microscopy, we demonstrated time-resolved 3D orientation imaging of sub-100 nm nanorods under Brownian motion (frame rate up to 500 fps). We also succeeded in imaging nanorods as nanoprobes in live-cell imaging and reconstructed their 3D rotational movement during interaction with the cell membrane (100 fps).


Assuntos
Ouro , Nanotubos , Movimento (Física)
5.
Opt Express ; 28(23): 34960-34972, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182953

RESUMO

The quality of lithographically prepared structures is intimately related to the properties of the metal film from which they are fabricated. Here we compare two kinds of thin gold films on a silicon nitride membrane: a conventional polycrystalline thin film deposited by magnetron sputtering and monocrystalline gold microplates that were chemically synthesised directly on the membrane's surface for the first time. Both pristine metals were used to fabricate plasmonic nanorods using focused ion beam lithography. The structural and optical properties of the nanorods were characterized by analytical transmission electron microscopy including electron energy loss spectroscopy. The dimensions of the nanorods in both substrates reproduced well the designed size of 240×80 nm2 with the deviations up to 20 nm in both length and width. The shape reproducibility was considerably improved among monocrystalline nanorods fabricated from the same microplate. Interestingly, monocrystalline nanorods featured inclined boundaries while the boundaries of the polycrystalline nanorods were upright. Q factors and peak loss probabilities of the modes in both structures are within the experimental uncertainty identical. We demonstrate that the optical response of the plasmonic nanorods is not deteriorated when the polycrystalline metal is used instead of the monocrystalline metal.

6.
Nano Lett ; 19(2): 1242-1250, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30602118

RESUMO

Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place ever-increasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (Pancharatnam-Berry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad.

7.
Nanotechnology ; 29(20): 205603, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29509147

RESUMO

Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

8.
Opt Express ; 25(14): 16560-16573, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789159

RESUMO

Scanning near-field optical microscopy (SNOM) in combination with interference structures is a powerful tool for imaging and analysis of surface plasmon polaritons (SPPs). However, the correct interpretation of SNOM images requires profound understanding of principles behind their formation. To study fundamental principles of SNOM imaging in detail, we performed spectroscopic measurements by an aperture-type SNOM setup equipped with a supercontinuum laser and a polarizer, which gave us all the degrees of freedom necessary for our investigation. The series of wavelength- and polarization-resolved measurements, together with results of numerical simulations, then allowed us to identify the role of individual near-field components in formation of SNOM images, and to show that the out-of-plane component generally dominates within a broad range of parameters explored in our study. Our results challenge the widespread notion that this component does not couple to the aperture-type SNOM probe and indicate that the issue of SNOM probe sensitivity towards the in-plane and out-of-plane near-field components - one of the most challenging tasks of near field interference SNOM measurements - is not yet fully resolved.

9.
Nano Lett ; 16(8): 4880-6, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458789

RESUMO

Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking.

10.
Langmuir ; 31(35): 9628-35, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26200443

RESUMO

Low-energy ion scattering (LEIS) is known for its extreme surface sensitivity, as it yields a quantitative analysis of the outermost surface as well as highly resolved in-depth information for ultrathin surface layers. Hence, it could have been generally considered to be a suitable technique for the analysis of graphene samples. However, due to the low scattering cross section for light elements such as carbon, LEIS has not become a common technique for the characterization of graphene. In the present study we use a high-sensitivity LEIS instrument with parallel energy analysis for the characterization of CVD graphene transferred to thermal silica/silicon substrates. Thanks to its high sensitivity and the exceptional depth resolution typical of LEIS, the graphene layer closure was verified, and different kinds of contaminants were detected, quantified, and localized within the graphene structure. Utilizing the extraordinarily strong neutralization of helium by carbon atoms in graphene, LEIS experiments performed at several primary ion energies permit us to distinguish carbon in graphene from that in nongraphitic forms (e.g., the remains of a resist). Furthermore, metal impurities such as Fe, Sn, and Na located at the graphene-silica interface (intercalated) are detected, and the coverages of Fe and Sn are determined. Hence, high-resolution LEIS is capable of both checking the purity of graphene surfaces and detecting impurities incorporated into graphene layers or their interfaces. Thus, it is a suitable method for monitoring the quality of the whole fabrication process of graphene, including its transfer on various substrates.

11.
Nano Lett ; 14(4): 1756-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24528181

RESUMO

A liquid droplet sitting on top of a pillar is crucially important for semiconductor nanowire growth via a vapor-liquid-solid (VLS) mechanism. For the growth of long and straight nanowires, it has been assumed so far that the droplet is pinned to the nanowire top and any instability in the droplet position leads to nanowire kinking. Here, using real-time in situ scanning electron microscopy during germanium nanowire growth, we show that the increase or decrease in the droplet wetting angle and subsequent droplet unpinning from the growth interface may also result in the growth of straight nanowires. Because our argumentation is based on terms and parameters common for VLS-grown nanowires, such as the geometry of the droplet and the growth interface, these conclusions are likely to be relevant to other nanowire systems.

12.
Nanotechnology ; 25(18): 185601, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24739598

RESUMO

Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications.

13.
Microsc Microanal ; 20(4): 1312-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24844888

RESUMO

Since semiconductor devices are being scaled down to dimensions of several nanometers there is a growing need for techniques capable of quantitative analysis of dopant concentrations at the nanometer scale in all three dimensions. Imaging dopant contrast by scanning electron microscopy (SEM) is a very promising method, but many unresolved issues hinder its routine application for device analysis, especially in cases of buried layers where site-specific sample preparation is challenging. Here, we report on optimization of site-specific sample preparation by the focused Ga ion beam (FIB) technique that provides improved dopant contrast in SEM. Similar to FIB lamella preparation for transmission electron microscopy, a polishing sequence with decreasing ion energy is necessary to minimize the thickness of the electronically dead layer. We have achieved contrast values comparable to the cleaved sample, being able to detect dopant concentrations down to 1×10(16) cm-3. A theoretical model shows that the electronically dead layer corresponds to an amorphized Si layer formed during ion beam polishing. Our results also demonstrate that contamination issues are significantly suppressed for FIB-treated samples compared with cleaved ones.

14.
Nano Lett ; 13(6): 2558-63, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23679961

RESUMO

The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

15.
ACS Omega ; 9(35): 37408-37416, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39246469

RESUMO

The behavior of plasmonic antennas is influenced by a variety of factors, including their size, shape, and material. Even minor changes in the deposition parameters during the thin film preparation process may have a significant impact on the dielectric function of the film, and thus on the plasmonic properties of the resulting antenna. In this work, we deposited gold thin films with thicknesses of 20, 30, and 40 nm at various deposition rates using an ion-beam-assisted deposition. We evaluate their morphology and crystallography by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. Next, we examined the ease of fabricating plasmonic antennas using focused-ion-beam lithography. Finally, we evaluate their plasmonic properties by electron energy loss spectroscopy measurements of individual antennas. Our results show that the optimal gold thin film for plasmonic antenna fabrication of a thickness of 20 and 30 nm should be deposited at the deposition rate of around 0.1 nm/s. The thicker 40 nm film should be deposited at a higher deposition rate like 0.3 nm/s.

16.
Sci Rep ; 14(1): 15305, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961198

RESUMO

The increasing miniaturization of everyday devices necessitates advancements in surface-sensitive techniques to access phenomena more effectively. Magnetic resonance methods, such as nuclear or electron paramagnetic resonance, play a crucial role due to their unique analytical capabilities. Recently, the development of a novel plasmonic metasurface resonator aimed at boosting the THz electron magnetic response in 2D materials resulted in a significant magnetic field enhancement, confirmed by both numerical simulations and experimental data. Yet, the mechanisms driving this resonance were not explored in detail. In this study, we elucidate these mechanisms using two semi-analytical models: one addressing the resonant behaviour and the other examining the orientation-dependent response, considering the anisotropy of the antennas and experimental framework. Our findings contribute to advancing magnetic spectroscopic techniques, broadening their applicability to 2D systems.

17.
J Phys Chem Lett ; 14(8): 2012-2019, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36794890

RESUMO

Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In this work, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 and 200 nm were grown directly on a silicon nitride membrane using an effusion cell developed in house that was operated under ultra-high-vacuum conditions. We have experimentally proven that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from the ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results pave the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.

18.
J Phys Chem C Nanomater Interfaces ; 127(25): 12404-12413, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37405362

RESUMO

We report on the optical properties of a CsPbBr3 polycrystalline thin film on a single grain level. A sample composed of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with a blue shift up to 9 nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission line width, thus detectable only by high-resolution PL mapping. By comparing the emission energies obtained from the experiment and a rigorous effective mass model, we can fully attribute the observed variations to the size-dependent quantum confinement effect.

19.
Opt Express ; 20(16): 17916-27, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23038341

RESUMO

An analytical model of the response of a free-electron gas within the nanorod to the incident electromagnetic wave is developed to investigate the optical antenna problem. Examining longitudinal oscillations of the free-electron gas along the antenna nanorod a simple formula for antenna resonance wavelengths proving a linear scaling is derived. Then the nanorod polarizability and scattered fields are evaluated. Particularly, the near-field amplitudes are expressed in a closed analytical form and the shift between near-field and far-field intensity peaks is deduced.

20.
Nanoscale Adv ; 4(17): 3549-3556, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134341

RESUMO

As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 × 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 °C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa