Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ecotoxicology ; 33(4-5): 457-469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38097853

RESUMO

Mercury (Hg) endangers human and wildlife health globally, primarily due to its release from artisanal small-scale gold mining (ASGM). During gold extraction, Hg is emitted into the environment and converted to highly toxic methylmercury by microorganisms. In Madre de Dios (MDD), Peru, ASGM dominates the economy and has transformed rainforests into expansive deforested areas punctuated by abandoned mining ponds. The aim of this study was to evaluate the use of bats as bioindicators for mercury pollution intensity in tropical terrestrial ecosystems impacted by ASGM. We collected 290 bat fur samples from three post-ASGM sites and one control site in Madre de Dios. Our results showed a wide Hg distribution in bats (0.001 to 117.71 mg/kg) strongly influenced by feeding habits. Insectivorous and piscivorous bats from ASGM sites presented elevated levels of Hg surpassing the mercury small mammal threshold for small mammals (10 mg/kg). We observed the highest reported fur mercury concentrations for insectivorous Neotropical bats reported to date (Rhynchonycteris naso, 117 mg/kg). Our findings further confirm that Hg emissions from ASGM are entering local food webs and exposing wildlife species at several trophic levels to higher levels of Hg than in areas not impacted by mining. We also found that three bat genera consistently showed increased Hg levels in ASGM sites relative to controls indicating potential usefulness as bioindicators of mercury loading in terrestrial ecosystems impacted by artisanal and small-scale gold mining.


Assuntos
Bioacumulação , Quirópteros , Ecossistema , Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Animais , Quirópteros/metabolismo , Peru , Mercúrio/análise , Mercúrio/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/análise
2.
Ecotoxicology ; 33(4-5): 472-483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363482

RESUMO

Artisanal and Small-Scale Gold Mining (ASGM) represents a significant source of anthropogenic mercury emissions to the environment, with potentially severe implications for avian biodiversity. In the Madre de Dios department of the southern Peruvian Amazon, ASGM activities have created landscapes marred by deforestation and post-mining water bodies (mining ponds) with notable methylation potential. While data on Hg contamination in terrestrial wildlife remains limited, this study measures Hg exposure in several terrestrial bird species as bioindicators. Total Hg (THg) levels in feathers from birds near water bodies, including mining ponds associated with ASGM areas and oxbow lakes, were analyzed. Our results showed significantly higher Hg concentrations in birds from ASGM sites with mean ± SD of 3.14 ± 7.97 µg/g (range: 0.27 to 72.75 µg/g, n = 312) compared to control sites with a mean of 0.47 ± 0.42 µg/g (range: 0.04 to 1.89 µg/g, n = 52). Factors such as trophic guilds, ASGM presence, and water body area significantly influenced feather Hg concentrations. Notably, piscivorous birds exhibited the highest Hg concentration (31.03 ± 25.25 µg/g, n = 12) exceeding known concentrations that affect reproductive success, where one measurement of Chloroceryle americana (Green kingfisher; 72.7 µg/g) is among the highest ever reported in South America. This research quantifies Hg exposure in avian communities in Amazonian regions affected by ASGM, highlighting potential risks to regional bird populations.


Assuntos
Aves , Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Animais , Mercúrio/análise , Peru , Plumas/química , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Exposição Ambiental
3.
Proc Biol Sci ; 286(1895): 20182284, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963945

RESUMO

Liverworts and mosses are a major component of the epiphyte flora of tropical montane forest ecosystems. Canopy access was used to analyse the distribution and vertical stratification of bryophyte epiphytes within tree crowns at nine forest sites across a 3400 m elevational gradient in Peru, from the Amazonian basin to the high Andes. The stable isotope compositions of bryophyte organic material (13C/12C and 18O/16O) are associated with surface water diffusive limitations and, along with C/N content, provide a generic index for the extent of cloud immersion. From lowland to cloud forest δ13C increased from -33‰ to -27‰, while δ18O increased from 16.3‰ to 18.0‰. Epiphytic bryophyte and associated canopy soil biomass in the cloud immersion zone was estimated at up to 45 t dry mass ha-1, and overall water holding capacity was equivalent to a 20 mm precipitation event. The study emphasizes the importance of diverse bryophyte communities in sequestering carbon in threatened habitats, with stable isotope analysis allowing future elevational shifts in the cloud base associated with changes in climate to be tracked.


Assuntos
Biodiversidade , Biomassa , Briófitas/química , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Altitude , Florestas , Peru
5.
Ecology ; 99(11): 2455-2466, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076592

RESUMO

More than 200 years ago, Alexander von Humboldt reported that tropical plant species richness decreased with increasing elevation and decreasing temperature. Surprisingly, coordinated patterns in plant, bacterial, and fungal diversity on tropical mountains have not yet been observed, despite the central role of soil microorganisms in terrestrial biogeochemistry and ecology. We studied an Andean transect traversing 3.5 km in elevation to test whether the species diversity and composition of tropical forest plants, soil bacteria, and fungi follow similar biogeographical patterns with shared environmental drivers. We found coordinated changes with elevation in all three groups: species richness declined as elevation increased, and the compositional dissimilarity among communities increased with increased separation in elevation, although changes in plant diversity were larger than in bacteria and fungi. Temperature was the dominant driver of these diversity gradients, with weak influences of edaphic properties, including soil pH. The gradients in microbial diversity were strongly correlated with the activities of enzymes involved in organic matter cycling, and were accompanied by a transition in microbial traits towards slower-growing, oligotrophic taxa at higher elevations. We provide the first evidence of coordinated temperature-driven patterns in the diversity and distribution of three major biotic groups in tropical ecosystems: soil bacteria, fungi, and plants. These findings suggest that interrelated and fundamental patterns of plant and microbial communities with shared environmental drivers occur across landscape scales. These patterns are revealed where soil pH is relatively constant, and have implications for tropical forest communities under future climate change.


Assuntos
Microbiologia do Solo , Solo/química , Biodiversidade , Ecossistema , Fungos/classificação , Temperatura
6.
Proc Natl Acad Sci U S A ; 111(47): E5016-22, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385593

RESUMO

Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations.

7.
Chemosphere ; 361: 142425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797216

RESUMO

Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.


Assuntos
Monitoramento Ambiental , Ouro , Mercúrio , Mineração , Poluentes do Solo , Solo , Mercúrio/análise , Peru , Poluentes do Solo/análise , Solo/química , Plantas/metabolismo , Ecossistema , Florestas , Floresta Úmida
8.
Sci Data ; 11(1): 225, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383609

RESUMO

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Assuntos
Ecossistema , Pradaria , Plantas , Biodiversidade , Peru , Clima , Altitude , Incêndios
9.
Glob Chang Biol ; 19(11): 3472-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23794172

RESUMO

Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1-ha plots spanning an altitudinal gradient of 70-2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate-driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr(-1) (95% CI = 0.0005-0.0132 °C yr(-1) ). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr(-1) , migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction.


Assuntos
Mudança Climática , Árvores/classificação , Biodiversidade , Costa Rica , Temperatura , Clima Tropical
10.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889800

RESUMO

Camera traps and drone surveys both leverage advancing technologies to study dynamic wildlife populations with little disturbance. Both techniques entail strengths and weaknesses, and common camera trap methods can be confounded by unrealistic assumptions and prerequisite conditions. We compared three methods to estimate the population density of white-tailed deer (Odocoileus virgnianus) in a section of Pilot Mountain State Park, NC, USA: (1) camera trapping using mark-resight ratios or (2) N-mixture modeling and (3) aerial thermal videography from a drone platform. All three methods yielded similar density estimates, suggesting that they converged on an accurate estimate. We also included environmental covariates in the N-mixture modeling to explore spatial habitat use, and we fit models for each season to understand temporal changes in population density. Deer occurred in greater densities on warmer, south-facing slopes in the autumn and winter and on cooler north-facing slopes and in areas with flatter terrain in the summer. Seasonal density estimates over two years suggested an annual cycle of higher densities in autumn and winter than in summer, indicating that the region may function as a refuge during the hunting season.

11.
Ecology ; 93(9): 2061-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23094378

RESUMO

Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed rates of migration, suggest a slow, or even initially negative response of ecosystem productivity to warming. Finally, this study shows how the observed scale of biological organization can affect conclusions drawn from studies of ecological phenomena across environmental gradients, and calls into question the common practice in tropical ecology of lumping species at higher taxonomic levels.


Assuntos
Ecossistema , Árvores/crescimento & desenvolvimento , Altitude , Clima , Demografia , Peru , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 106(30): 12382-7, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19617552

RESUMO

Estimates of the number, and preferably the identity, of species that will be threatened by land-use change and habitat loss are an invaluable tool for setting conservation priorities. Here, we use collections data and ecoregion maps to generate spatially explicit distributions for more than 40,000 vascular plant species from the Amazon basin (representing more than 80% of the estimated Amazonian plant diversity). Using the distribution maps, we then estimate the rates of habitat loss and associated extinction probabilities due to land-use changes as modeled under 2 disturbance scenarios. We predict that by 2050, human land-use practices will have reduced the habitat available to Amazonian plant species by approximately 12-24%, resulting in 5-9% of species becoming "committed to extinction," significantly fewer than other recent estimates. Contrary to previous studies, we find that the primary determinant of habitat loss and extinction risk is not the size of a species' range, but rather its location. The resulting extinction risk estimates are a valuable conservation tool because they indicate not only the total percentage of Amazonian plant species threatened with extinction but also the degree to which individual species and habitats will be affected by current and future land-use changes.


Assuntos
Ecossistema , Extinção Biológica , Desenvolvimento Vegetal , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Geografia , Humanos , Plantas/classificação , Densidade Demográfica , Dinâmica Populacional , Fatores de Risco , América do Sul , Especificidade da Espécie
14.
PLoS One ; 17(2): e0263377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108340

RESUMO

Understanding long-term trends in marine ecosystems requires accurate and repeatable counts of fishes and other aquatic organisms on spatial and temporal scales that are difficult or impossible to achieve with diver-based surveys. Long-term, spatially distributed cameras, like those used in terrestrial camera trapping, have not been successfully applied in marine systems due to limitations of the aquatic environment. Here, we develop methodology for a system of low-cost, long-term camera traps (Dispersed Environment Aquatic Cameras), deployable over large spatial scales in remote marine environments. We use machine learning to classify the large volume of images collected by the cameras. We present a case study of these combined techniques' use by addressing fish movement and feeding behavior related to halos, a well-documented benthic pattern in shallow tropical reefscapes. Cameras proved able to function continuously underwater at deployed depths (up to 7 m, with later versions deployed to 40 m) with no maintenance or monitoring for over five months and collected a total of over 100,000 images in time-lapse mode (by 15 minutes) during daylight hours. Our ResNet-50-based deep learning model achieved 92.5% overall accuracy in sorting images with and without fishes, and diver surveys revealed that the camera images accurately represented local fish communities. The cameras and machine learning classification represent the first successful method for broad-scale underwater camera trap deployment, and our case study demonstrates the cameras' potential for addressing questions of marine animal behavior, distributions, and large-scale spatial patterns.


Assuntos
Organismos Aquáticos/classificação , Recifes de Corais , Ecossistema , Peixes/classificação , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Fotografação/métodos , Animais , Dinâmica Populacional , Especificidade da Espécie
15.
Artigo em Inglês | MEDLINE | ID: mdl-36078698

RESUMO

The Matsigenka people living traditional lifestyles in remote areas of the Amazon rely on a fish-based diet that exposes them to methylmercury (MeHg) at levels that have been associated with decreased IQ scores. In this study, the association between Hg levels and working memory was explored using the framework of the Multicomponent Model. Working memory tasks were modified to fit the culture and language of the Matsigenka when needed and included measures for verbal storage (Word Span) visuospatial storage (Corsi Block Task) and a measure of executive functions, the Self-Ordered Pointing Task (SOPT). An innovation of the Trail Making Tests A & B (TMT A & B) was pilot tested as another potential measure of executive functions. The mean hair Hg levels of 30 participants, ages 12 to 55 years, from three different communities (Maizal, Cacaotal and Yomibato) was 7.0 ppm (sd = 2.40), well above the World Health Organization (WHO) limit for hair of 2.0 ppm and ranged from 1.8 to 14.2 ppm, with 98% of a broader sample of 152 individuals exceeding the WHO limit. Hair Hg levels showed significant associations with cognitive performance, but the degree varied in magnitude according to the type of task. Hg levels were negatively associated with executive functioning performance (SOPT errors), while Hg levels and years of education predicted visuospatial performance (Corsi Block accuracy). Education was the only predictor of Word Span accuracy. The results show that Hg exposure is negatively associated with working memory performance when there is an increased reliance on executive functioning. Based on our findings and the review of the experimental research, we suggest that the SOPT and the Corsi Block have the potential to be alternatives to general intelligence tests when studying remote groups with extensive cultural differences.


Assuntos
Memória de Curto Prazo , Mercúrio , Animais , Função Executiva , Humanos , Povos Indígenas , Mercúrio/análise , Testes Neuropsicológicos , Peru
16.
Ecology ; 92(4): 797-804, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21661542

RESUMO

The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2<0.17, P>0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2>0.75, P<0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities.


Assuntos
Altitude , Bactérias/classificação , Bactérias/genética , Biodiversidade , Plantas/classificação , Microbiologia do Solo , Animais , Peru , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
17.
Sci Rep ; 11(1): 19907, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620924

RESUMO

The number of reforestation projects worldwide is increasing. In many cases funding is obtained through the claimed carbon capture of the trees, presented as immediate and durable, whereas reforested plots need time and maintenance to realise their carbon capture potential. Further, claims usually overlook the environmental costs of natural or anthropogenic disturbances during the forest's lifetime, and greenhouse gas (GHG) emissions associated with the reforestation are not allowed for. This study uses life cycle assessment to quantify the carbon footprint of setting up a reforestation plot in the Peruvian Amazon. In parallel, we combine a soil carbon model with an above- and below-ground plant carbon model to predict the increase in carbon stocks after planting. We compare our results with the carbon capture claims made by a reforestation platform. Our results show major errors in carbon accounting in reforestation projects if they (1) ignore the time needed for trees to reach their carbon capture potential; (2) ignore the GHG emissions involved in setting up a plot; (3) report the carbon capture potential per tree planted, thereby ignoring limitations at the forest ecosystem level; or (4) under-estimate tree losses due to inevitable human and climatic disturbances. Further, we show that applications of biochar during reforestation can partially compensate for project emissions.


Assuntos
Ciclo do Carbono , Carbono/química , Conservação dos Recursos Naturais , Florestas , Biomassa , Brasil , Bases de Dados Factuais , Ecossistema , Modelos Teóricos , Peru , Software , Solo/química , Árvores
18.
Sci Adv ; 5(12): eaaw8114, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840057

RESUMO

Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotely sensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivity could be predicted by remotely sensed functional diversity. Functional richness of the community decreased with increasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play an important role in explaining the range of trait variation within each site and along elevation. Single- and multitrait remotely sensed measures of functional diversity were important predictors of variation in rates of net and gross primary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.


Assuntos
Biodiversidade , Ecologia , Tecnologia de Sensoriamento Remoto , Temperatura , Clima Tropical
20.
PLoS One ; 10(5): e0126594, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973977

RESUMO

General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.


Assuntos
Florestas , Biodiversidade , Modelos Lineares , Análise de Componente Principal , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa