RESUMO
In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.
Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hierarquia Social , Monoterpenos Acíclicos/metabolismo , Animais , Epigênese Genética , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismoRESUMO
Changes in microRNAs (miRNAs) expression have been described in major depressive disorder in young and middle-aged adults. However, no study has evaluated miRNA expression in older adults with major depression (or late-life depression [LLD]). Our primary aim was to evaluate the expression of miRNAs in subjects with LLD. We first evaluated the miRNA expression using next-generation sequencing (NGS) and then we validated the miRNAs found in NGS in an independent sample of LLD patients, using RT-qPCR. Drosophila melanogaster model was used to evaluate the impact of changes in miRNA expression on behavior. NGS analysis showed that hsa-miR-184 (log2foldchangeâ¯=â¯-4.21, pâ¯=â¯1.2â¯×â¯10-03) and hsa-miR-1-3p (log2foldchangeâ¯=â¯-3.45, pâ¯=â¯1.3â¯×â¯10-02) were significantly downregulated in LLD compared to the control group. RT-qPCR validated the downregulation of hsa-miR-184 (pâ¯<â¯0.001), but not for the hsa-miR-1-3p. The knockout flies of the ortholog of hsa-miR-184 showed significantly reduced locomotor activity at 21-24â¯d.p.e (pâ¯=â¯0.04) and worse memory retention at 21-24â¯d.p.e (24h post-stimulus, pâ¯=â¯0.02) compared to control flies. Our results demonstrated that subjects with LLD have significant downregulation of hsa-miR-184. Moreover, the knockout of hsa-miR-184 in flies lead to depressive-like behaviors, being more pronounce in older flies.