Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microbiol Spectr ; 10(4): e0103722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876588

RESUMO

Bacteriophages (phages) and other viruses are extremely efficient in packing their genetic information, with several described cases of overlapping genes encoded in different open reading frames (ORFs). While less frequently reported, specific cases exist in which two overlapping ORFs are in frame and share the stop codon. Here, we studied the occurrence of this genetic arrangement in endolysins, the phage enzymes that cut the bacterial cell wall peptidoglycan to release the virion progeny. After screening over 3,000 endolysin sequences of phages infecting Gram-positive bacteria, we found evidence that this coding strategy is frequent in endolysin genes. Our bioinformatics predictions were experimentally validated by demonstrating that two polypeptides are indeed produced from these genes. Additionally, we show that in some cases the two polypeptides need to interact and multimerize to generate the active endolysin. By studying in detail one selected example, we uncovered a heteromeric endolysin with a 1:5 subunit stoichiometry that has never been described before. Hence, we conclude that the occurrence of endolysin genes encoding two polypeptide isoforms by in-frame overlapping ORFs, as well as their organization as enzymatic complexes, appears more common than previously thought, therefore challenging the established view of endolysins being mostly formed by single, monomeric polypeptide chains. IMPORTANCE Bacteriophages use endolysins to cleave the host bacteria cell wall, a crucial event underlying cell lysis for virion progeny release. These bacteriolytic enzymes are generally thought to work as single, monomeric polypeptides, but a few examples have been described in which a single gene produces two endolysin isoforms. These are encoded by two in-frame overlapping ORFs, with a shorter ORF being defined by an internal translation start site. This work shows evidence that this endolysin coding strategy is frequent in phages infecting Gram-positive bacteria, and not just an eccentricity of a few phages. In one example studied in detail, we show that the two isoforms are inactive until they assemble to generate a multimeric active endolysin, with a 1:5 subunit stoichiometry never described before. This study challenges the established view of endolysins, with possible implications in their current exploration and design as alternative antibacterials.


Assuntos
Bacteriófagos , Bactérias , Bacteriófagos/genética , Parede Celular , Endopeptidases/química , Endopeptidases/genética , Peptidoglicano
2.
Biology (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552278

RESUMO

The increased use of antidepressants, along with their increased occurrence in aquatic environments, is of concern for marine organisms. Although these pharmaceutical compounds have been shown to negatively affect marine diatoms, their mode of action in these non-target, single-cell phototrophic organisms is yet unknown. Using a Fourier-transform ion cyclotron-resonance mass spectrometer (FT-ICR-MS) we evaluated the effects of fluoxetine in the metabolomics of the model diatom Phaeodactylum tricornutum, as well as the potential use of the identified metabolites as exposure biomarkers. Diatom growth was severely impaired after fluoxetine exposure, particularly in the highest dose tested, along with a down-regulation of photosynthetic and carbohydrate metabolisms. Notably, several mechanisms that are normally down-regulated by fluoxetine in mammal organisms were also down-regulated in diatoms (e.g., glycerolipid metabolism, phosphatidylinositol signalling pathway, vitamin metabolism, terpenoid backbone biosynthesis and serotonin remobilization metabolism). Additionally, the present work also identified a set of potential biomarkers of fluoxetine exposure that were up-regulated with increasing fluoxetine exposure concentration and are of high metabolic significance following the disclosed mode of action, reinforcing the use of metabolomics approaches in ecotoxicology.

3.
Chemosphere ; 274: 129860, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33607598

RESUMO

In recent years, the Antarctic territory has seen a rise in the number of tourists and scientists. This has led to an increase in the anthropogenic footprint in Antarctic ecosystems, namely in terms of emerging contaminants, such as Biocides, Persistent Organic Pollutants (POPs) as well as Pharmaceutical and Personal Care Products (PPCPs). Yet scarce information on the presence of these emerging contaminants is available for trophic compartments, especially the phytoplankton community. Using high resolution Fourier-transform ion cyclotron-resonance mass spectrometry (FT-ICR-MS), an untargeted screening of the metabolome of the phytoplankton community was performed. Seventy different contaminant compounds were found to be present in phytoplankton collected at two sites in Port Foster Bay at Deception Island. These emerging contaminants included 1 polycyclic aromatic hydrocarbon (PAH), 10 biocides (acaricides, fungicides, herbicides, insecticides and nematicides), 11 POPs (flame retardants, paints and dyes, polychlorinated biphenyl (PCB), phthalates and plastic components), 5 PCPs (cosmetic, detergents and dietary compounds), 40 pharmaceutical compounds and 3 illicit drugs. Pharmaceutical compounds were, by far, the largest group of emerging contaminants found in phytoplankton cells (anticonvulsants, antihypertensives and beta-blockers, antibiotics, analgesic and anti-inflammatory drugs). The detection of several of these potentially toxic compounds at the basis of the marine food web has potentially severe impacts for the whole ecosystem trophic structure. Additionally, the present findings also point out that the guidelines proposed by the Antarctic Treaty and Protocol on Environmental Protection to the Antarctic Treaty should be revisited to avoid the proliferation of these and other PPCPs in such sensitive environments.


Assuntos
Cosméticos , Desinfetantes , Preparações Farmacêuticas , Poluentes Químicos da Água , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Ilhas , Espectrometria de Massas , Poluentes Orgânicos Persistentes , Fitoplâncton , Poluentes Químicos da Água/análise
4.
Antioxidants (Basel) ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096834

RESUMO

Torpedino di Fondi (TF) is a hybrid tomato landrace developed in Sicily and recently introduced in the south Lazio area along with the classical San Marzano (SM) cultivar. The present study aimed at characterizing TF tomatoes at both pink and red ripening stages, and at comparing them with traditional SM tomatoes. A multidisciplinary approach consisting of morphological, chemical (FT-ICR MS, NMR, HPLC, and spectrophotometric methods), and biological (antioxidant and antifungal in vitro activity) analyses was applied. Morphological analysis confirmed the mini-San Marzano nature and the peculiar crunchy and solid consistency of TF fruits. Pink TF tomatoes displayed the highest content of hydrophilic antioxidants, like total polyphenols (0.192 mg/g), tannins (0.013 mg/g), flavonoids (0.204 mg/g), and chlorophylls a (0.344 mg/g) and b (0.161 mg/g), whereas red TF fruits were characterized by the highest levels of fructose (3000 mg/100 g), glucose (2000 mg/100 g), tryptophan (2.7 mg/100 g), phenylalanine (13 mg/100 g), alanine (25 mg/100 g), and total tri-unsaturated fatty acids (13% mol). Red SM fruits revealed the greatest content of lipophilic antioxidants, with 1234 mg/g of total carotenoids. In agreement with phenolics content, TF cultivar showed the greatest antioxidant activity. Lastly, red TF inhibited Candida species (albicans, glabrata and krusei) growth.

5.
Plant Physiol Biochem ; 137: 1-13, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710794

RESUMO

Grapevine (Vitis vinifera L.) is the most widely cultivated and economically important fruit crop in the world, with 7.5 million of production area in 2017. The domesticated varieties of grapevine are highly susceptible to many fungal infections, of which downy mildew, caused by the biotrophic oomycete Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is one of the most threatening. In V. vinifera, several studies have shown that a weak and transient activation of a defense mechanism occurs, but it is easily overcome by the pathogen leading to the establishment of a compatible interaction. Major transcript, protein and physiologic changes were shown to occur at later infection time-points, but comprehensive data on the first hours of interaction is scarce. In the present work, we investigated the major physiologic and metabolic changes that occur in the first 24 h of interaction between V. vinifera cultivar Trincadeira and P. viticola. Our results show that there was a negative modulation of several metabolic classes associated to pathogen defense such as flavonoids or phenylpropanoids as well as an alteration of carbohydrate content after inoculation with the pathogen. We also found an accumulation of hydrogen peroxide and increase of lipid peroxidation but to a low extent, that seems to be insufficient to restrain pathogen growth during the initial biotrophic phase of the interaction.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Peronospora/patogenicidade , Doenças das Plantas/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Estresse Oxidativo , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vitis/genética
6.
FEBS J ; 273(23): 5273-87, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17064314

RESUMO

Protein glycation by methylglyoxal is a nonenzymatic post-translational modification whereby arginine and lysine side chains form a chemically heterogeneous group of advanced glycation end-products. Methylglyoxal-derived advanced glycation end-products are involved in pathologies such as diabetes and neurodegenerative diseases of the amyloid type. As methylglyoxal is produced nonenzymatically from dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate during glycolysis, its formation occurs in all living cells. Understanding methylglyoxal glycation in model systems will provide important clues regarding glycation prevention in higher organisms in the context of widespread human diseases. Using Saccharomyces cerevisiae cells with different glycation phenotypes and MALDI-TOF peptide mass fingerprints, we identified enolase 2 as the primary methylglyoxal glycation target in yeast. Two other glycolytic enzymes are also glycated, aldolase and phosphoglycerate mutase. Despite enolase's activity loss, in a glycation-dependent way, glycolytic flux and glycerol production remained unchanged. None of these enzymes has any effect on glycolytic flux, as evaluated by sensitivity analysis, showing that yeast glycolysis is a very robust metabolic pathway. Three heat shock proteins are also glycated, Hsp71/72 and Hsp26. For all glycated proteins, the nature and molecular location of some advanced glycation end-products were determined by MALDI-TOF. Yeast cells experienced selective pressure towards efficient use of d-glucose, with high methylglyoxal formation as a side effect. Glycation is a fact of life for these cells, and some glycolytic enzymes could be deployed to contain methylglyoxal that evades its enzymatic catabolism. Heat shock proteins may be involved in proteolytic processing (Hsp71/72) or protein salvaging (Hsp26).


Assuntos
Proteínas de Choque Térmico/metabolismo , Aldeído Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Frutose-Bifosfato Aldolase/metabolismo , Glicólise , Glicosilação , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico/química , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
7.
Biochem Mol Biol Educ ; 44(1): 38-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26537432

RESUMO

Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map.


Assuntos
Metabolômica , Mitocôndrias/metabolismo , Biologia de Sistemas/educação , Análise de Fourier , Solanum tuberosum , Espectrometria de Massas por Ionização por Electrospray
8.
PLoS One ; 7(11): e50123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185553

RESUMO

Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR) as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic) and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE). We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase) were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO) expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.


Assuntos
Proteínas Amiloidogênicas/genética , Regulação Fúngica da Expressão Gênica , Pré-Albumina/genética , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Redes e Vias Metabólicas , Modelos Moleculares , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Conformação Proteica , Desnaturação Proteica , Redobramento de Proteína , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transformação Genética , Eletroforese em Gel Diferencial Bidimensional
9.
Biochemistry ; 47(1): 195-204, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18052346

RESUMO

The glyoxalase pathway catalyzes the formation of d-lactate from methylglyoxal, a toxic byproduct of glycolysis. In trypanosomatids, trypanothione replaces glutathione in this pathway, making it a potential drug target, since its selective inhibition might increase methylglyoxal concentration in the parasites. Two glyoxalase II structures were solved. One with a bound spermidine molecule (1.8 A) and the other with d-lactate at the active site (1.9 A). The second structure was obtained by crystal soaking with the enzyme substrate (S)-d-lactoyltrypanothione. The overall structure of Leishmania infantum glyoxalase II is very similar to its human counterpart, with important differences at the substrate binding site. The crystal structure of L. infantum glyoxalase II is the first structure of this enzyme from trypanosomatids. The differential specificity of glyoxalase II toward glutathione and trypanothione moieties was revealed by differential substrate binding. Evolutionary analysis shows that trypanosomatid glyoxalases II diverged early from eukaryotic enzymes, being unrelated to prokaryotic proteins.


Assuntos
Glutationa/análogos & derivados , Leishmania infantum/enzimologia , Filogenia , Espermidina/análogos & derivados , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glutationa/metabolismo , Cinética , Leishmania infantum/classificação , Leishmania infantum/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espermidina/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa