Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(48): e2214941119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409888

RESUMO

Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of ß-oxidation in Saccharomyces cerevisiae, and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes - Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase - demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilcoenzima A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxissomos/metabolismo , Carnitina/metabolismo , Peroxinas/metabolismo , Proteínas de Membrana/metabolismo
2.
Biotechnol Bioeng ; 121(1): 403-408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749915

RESUMO

The efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second-generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G-protein-coupled receptor (GPCR)-based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose-dependent signal amplification. We focused on the glucose-responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3 , increasing extracellular enzyme activity by 81%. We then demonstrated glucose-mediated expression and cell-surface display of the ß-glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re-directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock-out of PAH1. This resulted in an up to 4.2-fold improvement with respect to the baseline strain. Finally, we observed cellobiose-dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1-fold when cellobiose was added.


Assuntos
Celulose , Proteínas de Saccharomyces cerevisiae , Celulose/metabolismo , Celobiose/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , beta-Glucosidase , Glucose/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Vasc Bras ; 22: e20210181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576737

RESUMO

Background: Use of endolaser for chronic venous disease involves choosing the laser wavelength and optical fiber to use and the quantity of energy to be administered. Efficacy is assessed by the venous occlusion rate and safety is evaluated in terms of side effects. Objectives: To determine the incidence of total post-endolaser saphenous vein occlusion at 1-year follow-up. To describe side effects and their incidence and rates of reintervention or supplementary treatment during the postoperative period. Methods: A retrospective, observational cohort study with a quantitative approach, enrolling patients with saphenous vein incompetence treated with intravenous 1,470 nm laser ablation. Data were input to an MS Excel 2019 spreadsheet, calculating means and standard deviations with the software's Power Query supplement. Results: 38 patients and 104 venous segments were eligible for the study. 100% were occluded at 30 days and 99.04% were still occluded at 1 year after the procedure. Mean Linear Endovenous Energy Density administered to the internal saphenous vein was 2,040.52 W/cm/s with standard deviation of ± 1,510.06 W/cm/s and 1,168.4 W/cm/s with standard deviation of ± 665.011 W/cm/s was administered to the external saphenous vein. Pain along the saphenous path was the most common side effect, with eight cases (21.05%), followed by one case of paresthesia (2.63%). Conclusions: The total occlusion rate at 1-year follow-up suggests the technique is promising and is currently applicable in this sample. The incidence of pain and paresthesia may be caused by the high mean energy delivered in some cases. It is recommended that multicenter studies be conducted with larger and more uniform samples in terms of their Clinical-Etiological-Anatomical-Pathological classifications.

4.
Molecules ; 25(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664446

RESUMO

The characterization of six varieties of native Andean potatoes with a wide biodiversity in tuber shape, flesh, and skin color was performed, through the determination of their proximate composition, mineral content, and phenolic profile. Minerals concentration revealed significant genotypic variation. Potassium was the most abundant element in all varieties, ranging from 7272.9 to 13,059.9 µg/g and from 12,418 to 17,388.6 µg/g dried weight for the flesh and skin samples, respectively. Iron content was relevant, ranging from 20.5 to 39.9 µg/g and from 112.2 to 288.8 µg/g dried weight in flesh and skin samples, respectively. Phenolic compounds were consistently higher in the skin than in the flesh. The total content varied greatly from 19.5 to 2015.3 µg/g and from 1592.3 to 14807.3 µg/g dried weight for flesh and skin tissues, respectively. 5-caffeoylquinic acid was 74% of the total phenolic acids. Different pattern of anthocyanins was found, depending on the color of the variety; the red genotypes contained predominantly pelargonidin derivatives, while the purple samples had petunidin as a major anthocyanidin. This study increases the knowledge of the composition of the local Andean varieties (which are only scarcely studied so far), helping to enhance these genotypes and the conservation of biodiversity.


Assuntos
Fenóis/química , Solanum tuberosum/química , Solanum tuberosum/genética , Antocianinas/química , Antocianinas/genética , Biodiversidade , Cor , Genótipo , Hidroxibenzoatos/química , Minerais/química , Tubérculos/química , Tubérculos/genética , Potássio/química
5.
Metab Eng ; 55: 142-151, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220665

RESUMO

The yeast Saccharomyces cerevisiae is a valuable host for the production of heterologous proteins with a wide array of applications, ranging from cellulose saccharification enzymes to biopharmaceuticals. Efficient protein secretion may be critical for economic viability; however previous efforts have shown limited improvements that are often protein-specific. By enhancing transit through the early secretory pathway, we have successfully improved extracellular levels of three different proteins from variety of origins: a bacterial endoglucanase (CelA), a fungal ß-glucosidase (BglI) and a single-chain antibody fragment (4-4-20 scFv). Efficient co-translational translocation into the endoplasmic reticulum (ER) was achieved via secretion peptide engineering and the novel use of a 3'-untranslated region, improving extracellular activity or fluorescence 2.2-5.4-fold. We further optimized the pathway using a variety of new strategies including: i) increasing secretory pathway capacity by expanding the ER, ii) limiting ER-associated degradation, and iii) enhancing exit from the ER. By addressing these additional ER processing steps, extracellular activity/fluorescence increased by 3.5-7.1-fold for the three diverse proteins. The optimal combination of pathway interventions varied, and the highest overall increases ranged from 5.8 to 11-fold. These successful strategies should prove effective for improving the secretion of a wide range of heterologous proteins.


Assuntos
Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Via Secretória/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cardiovasc Electrophysiol ; 30(11): 2370-2376, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506997

RESUMO

BACKGROUND: Variability of ventricular arrhythmias among days in patients with Chagas disease is not detected by 24 hours of Holter monitoring. OBJECTIVE: To analyze whether ventricular arrhythmias are a random phenomenon or have a reproducible behavior in patients with Chagas cardiomyopathy. METHOD: Holter monitoring was recorded in 16 subjects with a mean age of 52 ± 8 years. They were clinically stable and had ventricular couplets, isolated premature ventricular contractions (PVCs), and nonsustained ventricular tachycardia (NSVT). The recordings occurred for 7 days. Hurst exponent (HE) evaluated randomness and predictability index (PI) and repeated analysis of variance (ANOVA) assessed reproducibility. RESULTS: The HE was significantly greater than 0.5 in all 16 patients, which confirms the nonrandomness of arrhythmias in this Chagas sample. The PI for ventricular couplets and isolated PVCs was, on average, 38% and 54%, respectively. ANOVA with repeated measurement showed significant differences in the daily frequency of ventricular couplets (n = 15, P ≤ .05), isolated PVC (n = 12, P ≤ .05), and NSVT (n = 7, P ≤ .05). CONCLUSION: Ventricular arrhythmias in Chagas cardiomyopathy are not random. Dissimilarities in arrhythmias frequency make unlikely that 24 hours of Holter recording can capture this variability.


Assuntos
Cardiomiopatia Chagásica/complicações , Eletrocardiografia Ambulatorial , Frequência Cardíaca , Periodicidade , Taquicardia Ventricular/diagnóstico , Complexos Ventriculares Prematuros/diagnóstico , Potenciais de Ação , Adulto , Idoso , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Risco , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Complexos Ventriculares Prematuros/etiologia , Complexos Ventriculares Prematuros/fisiopatologia
7.
Biotechnol Bioeng ; 116(7): 1721-1730, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905070

RESUMO

Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.


Assuntos
Kluyveromyces , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Mutação , Policetídeos/metabolismo , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento
8.
Biotechnol Bioeng ; 115(6): 1394-1402, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457628

RESUMO

Polyketides are attractive compounds for uses ranging from biorenewable chemical precursors to high-value therapeutics. In many cases, synthesis in a heterologous host is required to produce these compounds in industrially relevant quantities. The type III polyketide synthase 2-pyrone synthase (2-PS) from Gerbera hybrida was used for the production of triacetic acid lactone (TAL) in Saccharomyces cerevisiae. Initial in vitro characterization of 2-PS led to the identification of active site variants with improved kinetic properties relative to wildtype. Further in vivo evaluation in S. cerevisiae suggested certain 2-PS mutations altered enzyme stability during fermentation. In vivo experiments also revealed beneficial cysteine to serine mutations that were not initially explored due to their distance from the active site of 2-PS, leading to the design of additional 2-PS enzymes. While these variants showed varying catalytic efficiencies in vitro, they exhibited up to 2.5-fold increases in TAL production when expressed in S. cerevisiae. Coupling of the 2-PS variant [C35S,C372S] to an engineered S. cerevisiae strain led to over 10 g/L TAL at 38% of theoretical yield following fed-batch fermentation, the highest reported to date. Our studies demonstrate the success of a coupled in vitro/in vivo approach to engineering enzymes and provide insight on cysteine-rich enzymes and design principles toward their use in non-native microbial hosts.


Assuntos
Biotecnologia/métodos , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Pironas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Asteraceae/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
9.
FEMS Yeast Res ; 17(7)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961899

RESUMO

Fatty acids and fatty acid derivatives are important biorenewable products, as well as precursors for further transformation via chemical catalysis. This minireview focuses on recent advances in increasing the production of fatty acids and derived products in the yeast Saccharomyces cerevisiae. The engineering of upstream pathways to increase levels of the required precursors, fatty acid synthase systems to increase expression and to modify chain length, and downstream pathways to produce free fatty acids, fatty acid ethyl esters, fatty alcohols and alkanes are highlighted, and current challenges are discussed.


Assuntos
Ácidos Graxos/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/genética
10.
Biotechnol Bioeng ; 114(7): 1531-1538, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28294288

RESUMO

Biorenewable chemicals such as short and medium chain fatty acids enable functional or direct substitution of petroleum-derived building blocks, allowing reduction of anthropogenic greenhouse gases while meeting market needs of high-demand products like aliphatic alcohols and alpha olefins. However, producing these fatty acids in microorganisms can be challenging due to toxicity issues. Octanoic acid (C8) can disrupt the integrity of the cell membrane in yeast, and exogenous supplementation of oleic acid has been shown to help alleviate this. We recently engineered the Saccharomyces cerevisiae enzyme acetyl-CoA carboxylase by replacing serine residue 1157 with alanine to prevent deactivation by phosphorylation. Expression of Acc1S1157A in S. cerevisiae resulted in an increase in total fatty acid production, with the largest increase for oleic acid. In this study, we evaluated the effect of this modified lipid profile on C8 toxicity to the yeast. Expression of Acc1S1157A in S. cerevisiae BY4741 increased the percentage of oleic acid 3.1- and 1.6-fold in the absence and presence of octanoic acid challenge, respectively. Following exposure to 0.9 mM of C8 for 24 h, the engineered yeast had a 10-fold higher cell density relative to the baseline strain. Moreover, overexpressing Acc1S1157A allowed survival at C8 concentrations that were lethal for the baseline strain. This marked reduction of toxicity was shown to be due to higher membrane integrity as an 11-fold decrease in leakage of intracellular magnesium was observed. Due to the increase in oleic acid, this approach has the potential to reduce toxicity of other valuable bioproducts such as shorter chain aliphatic acids and alcohols and other membrane stressors. In an initial screen, increased resistance to n-butanol, 2-propanol, and hexanoic acid was demonstrated with cell densities 3.2-, 1.8-, and 29-fold higher than the baseline strain, respectively. Biotechnol. Bioeng. 2017;114: 1531-1538. © 2017 Wiley Periodicals, Inc.


Assuntos
Acetil-CoA Carboxilase/genética , Caprilatos/metabolismo , Sobrevivência Celular/fisiologia , Ácidos Graxos/metabolismo , Melhoramento Genético/métodos , Saccharomyces cerevisiae/fisiologia , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Metab Eng ; 36: 80-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969250

RESUMO

Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.


Assuntos
Acetilcoenzima A/biossíntese , Coenzimas/genética , Melhoramento Genético/métodos , Redes e Vias Metabólicas/genética , Policetídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Acetilcoenzima A/isolamento & purificação , Vias Biossintéticas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Engenharia Metabólica/métodos , Policetídeos/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação para Cima/genética
12.
Biotechnol Bioeng ; 113(4): 895-900, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26388428

RESUMO

Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full ß-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific ß-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full ß-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain ß-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Humanos , Oxirredução , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transgenes
13.
Metab Eng ; 28: 54-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25461829

RESUMO

The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. ß-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae.


Assuntos
Ácidos Graxos , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biotechnol Bioeng ; 112(12): 2618-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26084339

RESUMO

The native yeast type I fatty acid synthase (FAS) is a complex, rigid enzyme, and challenging to engineer for the production of medium- or short-chain fatty acids. Introduction of a type II FAS is a promising alternative as it allows expression control for each discrete enzyme and the addition of heterologous thioesterases. In this study, the native Saccharomyces cerevisiae FAS was functionally replaced by the Escherichia coli type II FAS (eFAS) system. The E. coli acpS + acpP (together), fabB, fabD, fabG, fabH, fabI, fabZ, and tesA were expressed in individual S. cerevisiae strains, and enzyme activity was confirmed by in vitro activity assays. Eight genes were then integrated into the yeast genome, while tesA or an alternate thioesterase gene, fatB from Ricinus communis or TEII from Rattus novergicus, was expressed from a multi-copy plasmid. Native FAS activity was eliminated by knocking out the yeast FAS2 gene. The strains expressing only the eFAS as de novo fatty acid source grew without fatty acid supplementation demonstrating that this type II FAS is able to functionally replace the native yeast FAS. The engineered strain expressing the R. communis fatB thioesterase increased total fatty acid titer 1.7-fold and shifted the fatty acid profile towards C14 production, increasing it from <1% in the native strain to more than 30% of total fatty acids, and reducing C18 production from 39% to 8%.


Assuntos
Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas de Escherichia coli/genética , Ácido Graxo Sintases/genética , Deleção de Genes , Expressão Gênica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
J Ind Microbiol Biotechnol ; 42(5): 711-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682106

RESUMO

Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into 13 industrial yeast strains of varied genetic background. TAL production varied 63-fold between strains when compared in batch culture with glucose. Ethanol, acetate, and glycerol were also tested as potential carbon sources. Batch cultures with ethanol medium produced the highest titers. Therefore, fed-batch cultivation with ethanol feed was assayed for TAL production in bioreactors, producing our highest TAL titer, 5.2 g/L. Higher feed rates resulted in a loss of TAL and subsequent production of additional TAL side products. Finally, TAL efflux was measured and TAL is actively exported from S. cerevisiae cells. Percent yield for all strains was low, indicating that further metabolic engineering of the strains is required.


Assuntos
Reatores Biológicos , Engenharia Metabólica , Pironas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Técnicas de Cultura Celular por Lotes , Etanol/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética
16.
Water Sci Technol ; 72(6): 990-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360760

RESUMO

This present study aimed to characterize the bacterial community in a well-established nitrifying reactor by high-throughput sequencing of 16S rRNA amplicons. The laboratory-scale continuous stirred tank reactor has been supplied with ammonium (NH(4)(+)) as sole energy source for over 5 years, while no organic carbon has been added, assembling thus a unique planktonic community with a mean NH(4)(+) removal rate of 86 ± 1.4 mg NH(4)(+)-N/(L d). Results showed a nitrifying community composed of bacteria belonging to Nitrosomonas (relative abundance 11.0%) as the sole ammonia oxidizers (AOB) and Nitrobacter (9.3%) as the sole nitrite oxidizers (NOB). The Alphaproteobacteria (42.3% including Nitrobacter) were the most abundant class within the Proteobacteria (62.8%) followed by the Gammaproteobacteria (9.4%). However, the Betaproteobacteria (excluding AOB) contributed only 0.08%, confirming that Alpha- and Gammaproteobacteria thrived in low-organic-load environments while heterotrophic Betaproteobacteria are not well adapted to these conditions. Bacteroidetes, known to metabolize extracellular polymeric substances produced by nitrifying bacteria and secondary metabolites of the decayed biomass, was the second most abundant phylum (30.8%). It was found that Nitrosomonas and Nitrobacter sustained a broad population of heterotrophs in the reactor dominated by Alpha- and Gammaproteobacteria and Bacteroidetes, in a 1:4 ratio of total nitrifiers to all heterotrophs.


Assuntos
Bactérias/genética , Reatores Biológicos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Amônia/metabolismo , Bactérias/isolamento & purificação , Nitrificação , Nitritos/metabolismo , Nitrobacter/metabolismo , Nitrosomonas/metabolismo , Oxirredução , Filogenia
17.
Metab Eng ; 25: 194-203, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25084369

RESUMO

Biobased chemicals have become attractive replacements for their fossil-fuel counterparts. Recent studies have shown triacetic acid lactone (TAL) to be a promising candidate, capable of undergoing chemical conversion to sorbic acid and other valuable intermediates. In this study, Saccharomyces cerevisiae was engineered for the high-level production of TAL by overexpression of the Gerbera hybrida 2-pyrone synthase (2-PS) and systematic engineering of the yeast metabolic pathways. Pathway analysis and a computational approach were employed to target increases in cofactor and precursor pools to improve TAL synthesis. The pathways engineered include those for energy storage and generation, pentose biosynthesis, gluconeogenesis, lipid biosynthesis and regulation, cofactor transport, and fermentative capacity. Seventeen genes were selected for disruption and independently screened for their effect on TAL production; combinations of knockouts were then evaluated. A combination of the pathway engineering and optimal culture parameters led to a 37-fold increase in titer to 2.2g/L and a 50-fold increase in yield to 0.13 (g/g glucose). These values are the highest reported in the literature, and provide a 3-fold improvement in yield over previous reports using S. cerevisiae. Identification of these metabolic bottlenecks provides a strategy for overproduction of other acetyl-CoA-dependent products in yeast.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Glucose/metabolismo , Engenharia Metabólica/métodos , Pironas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/genética
18.
Biotechnol Bioeng ; 111(2): 347-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23928901

RESUMO

Carbon feedstocks from fossilized sources are being rapidly depleted due to rising demand for industrial and commercial applications. Many petroleum-derived chemicals can be directly or functionally substituted with chemicals derived from renewable feedstocks. Several short chain organic acids may fulfill this role using their functional groups as a target for chemical catalysis. Saccharomyces cerevisiae was engineered to produce short chain carboxylic acids (C6 to C10 ) from glucose using the heterologous Homo sapiens type I fatty acid synthase (hFAS). This synthase was activated by phosphopantetheine transfereases AcpS and Sfp from Escherichia coli and Bacillus subtilis, respectively, both in vitro and in vivo. hFAS was produced in the holo-form and produced carboxylic acids in vitro, confirmed by NADPH and ADIFAB assays. Overexpression of hFAS in a yeast FAS2 knockout strain, deficient in de novo fatty acid synthesis, demonstrated the full functional replacement of the native fungal FAS by hFAS. Two active heterologous short chain thioesterases (TEs) from Cuphea palustris (CpFatB1) and Rattus norvegicus (TEII) were evaluated for short chain fatty acid (SCFA) synthesis in vitro and in vivo. Three hFAS mutants were constructed: a mutant deficient in the native TE domain, a mutant with a linked CpFatB1 TE and a mutant with a linked TEII TE. Using the native yeast fatty acid synthase for growth, the overexpression of the hFAS mutants and the short-chain TEs (linked or plasmid-based) increased in vivo caprylic acid and total SCFA production up to 64-fold (63 mg/L) and 52-fold (68 mg/L), respectively, over the native yeast levels. Combined over-expression of the phosphopantetheine transferase with the hFAS mutant resulted in C8 titers of up to 82 mg/L and total SCFA titers of up to 111 mg/L.


Assuntos
Ácidos Graxos Voláteis/biossíntese , Engenharia Metabólica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animais , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Glucose/metabolismo , Humanos , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biomacromolecules ; 15(10): 3540-9, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25144412

RESUMO

Collagen is the most abundant protein in extracellular matrices and is commonly used as a tissue engineering scaffold. However, collagen and other biopolymers from native sources can exhibit limitations when tuning mechanical and biological properties. Cysteines do not naturally occur within the triple-helical region of any native collagen. We utilized a novel modular synthesis strategy to fabricate variants of recombinant human collagen that contained 2, 4, or 8 non-native cysteines at precisely defined locations within each biopolymer. This bottom-up approach introduced capabilities using sulfhydryl chemistry to form hydrogels and immobilize bioactive factors. Collagen variants retained their triple-helical structure and supported cellular adhesion. Hydrogels were characterized using rheology, and the storage moduli were comparable to fibrillar collagen gels at similar concentrations. Furthermore, the introduced cysteines functioned as anchoring sites, with TGF-ß1-conjugated collagens promoting myofibroblast differentiation. This approach demonstrates the feasibility to produce custom-designed collagens with chemical functionality not available from native sources.


Assuntos
Cisteína/química , Colágenos Fibrilares/química , Proteínas Recombinantes/química , Alicerces Teciduais/química , Adesão Celular/fisiologia , Cisteína/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Humanos , Hidrogéis/química , Proteínas Recombinantes/metabolismo , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/metabolismo
20.
Extremophiles ; 18(3): 561-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638260

RESUMO

The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.


Assuntos
Metano/metabolismo , Microbiota , Microbiologia do Solo , Álcalis/análise , Proteínas de Bactérias/metabolismo , Methylobacterium/enzimologia , Methylobacterium/isolamento & purificação , Oxirredução , Oxigenases/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa