Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Imaging ; 2021: 5540569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194285

RESUMO

Background: Although therapeutic advances have led to enhanced survival in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer, detection of residual disease remains challenging. Here, we examine two approved anti-HER2 monoclonal antibodies (mAbs), trastuzumab and pertuzumab, as potential candidates for the development of immunoconjugates for fluorescence-guided surgery (FGS). Methods: mAbs were conjugated to the near-infrared fluorescent (NIRF) dye, IRDye800, and for quantitative in vitro assessment, to the radiometal chelator, desferrioxamine, to enable dual labeling with 89Zr. In vitro binding was evaluated in HER2-overexpressing (BT474, SKBR3) and HER2-negative (MCF7) cell lines. BT474 and MCF7 xenografts were used for in vivo and ex vivo fluorescence imaging. Results: In vitro findings demonstrated HER2-mediated binding for both fluorescent immunoconjugates and were in agreement with radioligand assays using dual-labeled immunoconjugates. In vivo and ex vivo studies showed preferential accumulation of the fluorescently-labeled mAbs in tumors and similar tumor-to-background ratios. In vivo HER2 specificity was confirmed by immunohistochemical staining of resected tumors and normal tissues. Conclusions: We showed for the first time that fluorescent trastuzumab and pertuzumab immunoconjugates have similar NIRF imaging performance and demonstrated the possibility of performing HER2-targeted FGS with agents that possess distinct epitope specificity.


Assuntos
Neoplasias da Mama , Imunoconjugados , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Fluorescência , Humanos , Receptor ErbB-2 , Trastuzumab
2.
Mol Pharm ; 15(6): 2448-2454, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29718672

RESUMO

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is highly expressed in colorectal tumors and marks colon cancer stem cells that drive tumor growth and metastasis. Recently, we showed that LGR5 is a promising target for antibody-drug conjugate (ADC) therapy. However, it is important to identify LGR5-positive tumors that would respond to ADC treatment. Prior to drug conjugation, we evaluated two different anti-LGR5 monoclonal antibodies (mAbs), 8F2 and 9G5, using 89Zr-immunoPET to select the optimal mAb for ADC development and tumor imaging. Binding, specificity, and internalization were compared, and mAbs were prescreened as ADC candidates against colon cancer cells using secondary ADCs. Both mAbs demonstrated strong, specific binding in 293T-LGR5 cells but not 293T-vector cells. In DLD-1 colorectal cancer cells, which express high levels of LGR5, the mAbs rapidly internalized into lysosomes and promoted ADC-induced cytotoxicity, with 8F2 exhibiting slightly higher potency. No binding was detected in DLD-1-shLGR5 (LGR5 knockdown) cells. 89Zr-DFO-LGR5 mAbs were generated and shown to retain high affinity and LGR5-dependent uptake in vitro. PET/CT imaging of DLD-1 tumors was performed 5 days postinjection of 89Zr-DFO-LGR5 mAbs, and findings were consistent with biodistribution data, which showed significantly higher tumor uptake (%ID/g) for 89Zr-DFO-8F2 (17.9 ± 2.2) compared to 89Zr-DFO-9G5 (5.5 ± 1.2) and 89Zr-DFO-IgG (3.8 ± 1.0). No significant uptake was observed in DLD-1-shLGR5 tumors. This study identifies 8F2 as the optimal candidate for ADC development and provides initial evidence that 89Zr-DFO-LGR5 mAbs may be utilized to stratify tumors which would respond best to LGR5-targeted ADC therapy.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias Colorretais/diagnóstico por imagem , Imunoconjugados/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , RNA Interferente Pequeno/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio
3.
Clin Cancer Res ; 25(14): 4332-4342, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31015345

RESUMO

PURPOSE: Clinically available intraoperative imaging tools to assist surgeons in identifying occult lesions are limited and partially responsible for the high rate of disease recurrence in patients with neuroendocrine tumors (NET). Using the established clinical efficacy of radiolabeled somatostatin analogs as a model, we demonstrate the ability of a fluorescent somatostatin analog to selectively target tumors that overexpress somatostatin receptor subtype-2 (SSTR2) and demonstrate utility for fluorescence-guided surgery (FGS). EXPERIMENTAL DESIGN: A multimodality chelator (MMC) was used as a "radioactive linker" to synthesize the fluorescently labeled somatostatin analog, 67/68Ga-MMC(IR800)-TOC. In vivo studies were performed to determine the pharmacokinetic profile, optimal imaging time point, and specificity for SSTR2-expressing tissues. Meso- and microscopic imaging of resected tissues and frozen sections were also performed to further assess specific binding, and binding to human NETs was examined using surgical biospecimens from patients with pancreatic NETs. RESULTS: Direct labeling with 67Ga/68Ga provided quantitative biodistribution analysis that was in agreement with fluorescence data. Receptor-mediated uptake was observed in vivo and ex vivo at the macro-, meso-, and microscopic scales. Surgical biospecimens from patients with pancreatic NETs also displayed receptor-specific agent binding, allowing clear delineation of tumor boundaries that matched pathology findings. CONCLUSIONS: The radioactive utility of the MMC allowed us to validate the binding properties of a novel FGS agent that could have a broad impact on cancer outcomes by equipping surgeons with real-time intraoperative imaging capabilities.


Assuntos
Radioisótopos de Gálio/farmacocinética , Tumores Neuroendócrinos/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Somatostatina/metabolismo , Cirurgia Assistida por Computador/métodos , Animais , Quelantes/química , Feminino , Fluorescência , Humanos , Camundongos , Camundongos Nus , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/cirurgia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/secundário , Neoplasias Pancreáticas/cirurgia , Receptores de Somatostatina/antagonistas & inibidores , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa