Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 886-892, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720071

RESUMO

Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.


Assuntos
Alteromonadaceae , Ligantes , Rhodobacteraceae , Vitamina B 12 , Oceano Atlântico , Técnicas de Cocultura , Interações Microbianas , Prófagos/genética , Prófagos/crescimento & desenvolvimento , Prófagos/metabolismo , Vitamina B 12/biossíntese , Vitamina B 12/química , Vitamina B 12/metabolismo , Alteromonadaceae/crescimento & desenvolvimento , Alteromonadaceae/metabolismo , Rhodobacteraceae/citologia , Rhodobacteraceae/metabolismo , Rhodobacteraceae/virologia , Ribonucleosídeos/metabolismo , Cobamidas/metabolismo , Ecossistema
2.
Environ Microbiol ; 26(3): e16594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418376

RESUMO

The availability of alginate, an abundant macroalgal polysaccharide, induces compositional and functional responses among marine microbes, but these dynamics have not been characterized across the Pacific Ocean. We investigated alginate-induced compositional and functional shifts (e.g., heterotrophic production, glucose turnover, hydrolytic enzyme activities) of microbial communities in the South Subtropical, Equatorial, and Polar Frontal North Pacific in mesocosms. We observed that shifts in response to alginate were site-specific. In the South Subtropical Pacific, prokaryotic cell counts, glucose turnover, and peptidase activities changed the most with alginate addition, along with the enrichment of the widest range of particle-associated taxa (161 amplicon sequence variants; ASVs) belonging to Alteromonadaceae, Rhodobacteraceae, Phormidiaceae, and Pseudoalteromonadaceae. Some of these taxa were detected at other sites but only enriched in the South Pacific. In the Equatorial Pacific, glucose turnover and heterotrophic prokaryotic production increased most rapidly; a single Alteromonas taxon dominated (60% of the community) but remained low (<2%) elsewhere. In the North Pacific, the particle-associated community response to alginate was gradual, with a more limited range of alginate-enriched taxa (82 ASVs). Thus, alginate-related ecological and biogeochemical shifts depend on a combination of factors that include the ability to utilize alginate, environmental conditions, and microbial interactions.


Assuntos
Alginatos , Alteromonadaceae , Oceano Pacífico , Células Procarióticas , Glucose , Água do Mar/microbiologia
3.
Environ Microbiol ; 25(12): 3536-3555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705313

RESUMO

Diatoms as important phytoplankton components interact with and are colonized by heterotrophic bacteria. This colonization has been studied extensively in the past but a distinction between the bacterial colonization directly on diatom cells or on the aggregated organic material, exopolymeric substances (EPS), was little addressed. Here we show that the diatom Thalassiosira rotula and EPS were differently colonized by strains of Roseobacteraceae and Flavobacteriaceae in two and tree partner treatments and an enriched natural bacterial community as inoculum. In two partner treatments, the algae and EPS were generally less colonized than in the three partner treatments. Two strains benefitted greatly from the presence of another partner as the proportions of their subpopulations colonizing the diatom cell and the EPS were much enhanced relative to their two partner treatments. Highest proportions of bacteria colonizing the diatom and EPS occurred in the treatment inoculated with the enriched natural bacterial community. Dissolved organic carbon, amino acids and carbohydrates produced by T. rotula were differently used by the bacteria in the two and three partner treatments and most efficiently by the enriched natural bacterial community. Our approach is a valid model system to study physico-chemical bacteria-diatom interactions with increasing complexity.


Assuntos
Diatomáceas , Flavobacteriaceae , Gammaproteobacteria , Diatomáceas/metabolismo , Flavobacterium , Fitoplâncton
4.
J Phycol ; 59(2): 309-322, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36471567

RESUMO

Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fucose/metabolismo , Bactérias/metabolismo , Ecossistema , Glicoconjugados/metabolismo , Lectinas/metabolismo
5.
Environ Microbiol ; 23(6): 3130-3148, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876546

RESUMO

Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.


Assuntos
Alginatos , Gammaproteobacteria , Bactérias/genética , Gammaproteobacteria/genética , Metagenoma , Pectinas
6.
Environ Microbiol ; 22(11): 4779-4793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935476

RESUMO

It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low-density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE-laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE-laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in-situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.


Assuntos
Bactérias/metabolismo , Microbiota , Plásticos/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Oceanos e Mares , Polietileno/metabolismo
7.
Environ Microbiol ; 20(8): 3100-3108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30109757

RESUMO

Bacterial biogeography and activity in the Southern Ocean are poorly understood to date. Here, we applied CARD-FISH to quantify bacterial community structure from the subtropics to Antarctica between 10°W and 10°E, covering four biogeographic provinces with distinct environmental properties. In addition, incorporation of radiolabeled glucose, amino acids and leucine via MAR-FISH served to quantify the contribution to substrate turnover by selected bacterial groups. SAR11, Bacteroidetes, Gammaproteobacteria and the Roseobacter group accounted for the majority of the bacterial community (52%-88% of DAPI-stained cells) but showed little distributional variation between provinces. In contrast, taxonomic subclades Polaribacter, NS5, NS2b (Bacteroidetes) as well as RCA (Roseobacter group) featured marked geographic variation, illustrated by NMDS and coefficients of variation. Roseobacter (specifically RCA) and Gammaproteobacteria constituted considerable fractions of cells incorporating glucose and amino acids respectively. Bacteroidetes had generally lower activities, but Polaribacter accounted for a major fraction of biomass production at one station near the Antarctic ice shelf. In conclusion, distributional patterns at finer taxonomic level and highest substrate turnover by less abundant taxa highlight the importance of taxonomic subclades in marine carbon fluxes, contributing to the understanding of functional bacterial biogeography in the Southern Ocean.


Assuntos
Bactérias/isolamento & purificação , Água do Mar/microbiologia , Aminoácidos/metabolismo , Regiões Antárticas , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Biodiversidade , Glucose/metabolismo , Filogenia , Análise de Célula Única
8.
Int J Syst Evol Microbiol ; 68(3): 736-744, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458459

RESUMO

A heterotrophic, Gram-stain-negative, aerobic, sodium-requiring and motile bacterium was isolated from oil-contaminated surface water of the Gulf of Mexico during the Deepwater Horizon oil spill. Strain O3.65T showed highest 16S rRNA gene sequence similarity to Phaeobacter gallaeciensis BS107T and Phaeobacter inhibens T5T, both with 98.3 %, respectively. Based on complete genome analysis, highest similarity was observed to species of the genus Ruegeria. Strain O3.65T exhibited a broad salinity, temperature and pH range of 0.5-10 % NaCl, 4-45 °C and 5.5-9.0, respectively. The DNA G+C content of strain O3.65T was 61.5 mol%. The major respiratory lipoquinone was ubiquinone-10 (Q-10), the most dominant fatty acids (>1 %) comprised 18 : 1ω7c and 18 : 1ω7c 11-methyl, 10 : 0 3OH, 12 : 1 3OH, 14 : 1 3OH/3-oxo-14 : 0, 16 : 0, 16 : 0 2OH, 18 : 1 2OH and 12 : 1. The polar lipid pattern indicated presence of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, two unidentified phospholipids and seven unidentified lipids. On Difco marine broth agar, strain O3.65T formed smooth, shiny white to beige and convex colonies with regular edges. Phylogenetic, phylogenomic and phenotypic differences revealed that strain O3.65T represents a new species of a novel genus within the family Rhodobacteraceae, for which we propose the name Tritonibacter horizontis gen. nov., sp. nov. The type strain of the type species is O3.65T (=DSM 101689T=LMG 29740T).


Assuntos
Poluição por Petróleo , Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Golfo do México , Processos Heterotróficos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química , Poluentes Químicos da Água
9.
Int J Syst Evol Microbiol ; 67(7): 2153-2159, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28699865

RESUMO

Three heterotrophic, aerobic, brown-pigmented strains, designated P97T, P100 and P104, were isolated from a harbour in the southern North Sea. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are affiliated to the genus Phaeobacter. In silico DNA-DNA hybridization of the genome of strain P97T against those of existing type species indicated that P97T represents a novel species within the genus Phaeobacter, with Phaeobacter inhibens T5T as the closest described organism (29.6 % DNA-DNA relatedness) followed by P. gallaeciensis CIP 105210T (26.4 %). DNA-DNA hybridization demonstrated that the three new strains belong to the same species. The new isolates inhibited Pseudoalteromonas tunicata DSM 14096T, and were Gram-stain-negative, catalase- and oxidase-positive, chemo-organoheterotrophic and motile. Growth occurred at pH 6.5-9.5 (optimum 7.0-8.0) and at 4-30 °C (optimum 20-28 °C). The strains required NaCl for growth. The salinity range was 0.5-6.0 % (w/v) NaCl for P97T and P100, and 0.5-5.0 % for P104, lower than values described for Phaeobacter gallaeciensis and Phaeobacter inhibens. The optimum NaCl concentration for strains P97T and P104 was 2.0-4.0 %, and for P100 was 2.0-3.0 %. Fatty acids (>1 %) comprised 18 : 1ω7c, 16 : 0, 18 : 1 ω7c 11-methyl, 18 : 0, 12 :1, 18 : 2ω7c,12, 10 : 0 3-OH and 12 : 0 3-OH. Polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, one unknown lipid and one additional unknown lipid in strain P97T. The major respiratory quinone was Q10. Based on phylogenetic and phenotypic differences, the strains represent a novel species in the genus Phaeobacter, for which the name Phaeobacter porticola sp. nov. is proposed. The type strain is P97T (=DSM 103148T=LMG 29594T).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Antibacterianos/biossíntese , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Processos Heterotróficos , Mar do Norte , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , Quinonas/análise , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
10.
Environ Microbiol ; 18(12): 4369-4377, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27059936

RESUMO

Alginate is a major cell wall polysaccharide from marine macroalgae and nutrient source for heterotrophic bacteria. Alginate can form gel particles in contact with divalent cations as found in seawater. Here, we tested the hypothesis that alginate gel particles serve as carbon source and microhabitat for marine bacteria by adding sterile alginate particles to microcosms with seawater from coastal California, a habitat rich in alginate-containing macroalgae. Alginate particles were rapidly colonized and degraded, with three- to eightfold higher bacterial abundances and production among alginate particle-associated (PA) bacteria. 16S rRNA gene amplicon sequencing showed that alginate PA bacteria were enriched in OTUs related to Cryomorphaceae, Saprospiraceae (Bacteroidetes) and Phaeobacter (Alphaproteobacteria) towards the end of the experiment. In microcosms amended with alginate particles and the proficient alginolytic bacterium Alteromonas macleodii strain 83-1, this strain dominated the community and outcompeted Cryomorphaceae, Saprospiraceae and Phaeobacter, and PA hydrolytic activities were over 50% higher. Thus, alginolytic activity by strain 83-1 did not benefit non-alginolytic strains by cross-feeding on alginate hydrolysis or other metabolic products. Considering the global distribution and extensive biomass of alginate-containing macroalgae, the observed bacterial dynamics associated with the utilization and remineralization of alginate microhabitats promote the understanding of carbon cycling in macroalgae-rich waters worldwide.


Assuntos
Alginatos/metabolismo , Alteromonas/metabolismo , Bactérias/metabolismo , Água do Mar/microbiologia , Alteromonas/genética , Alteromonas/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , California , Ecossistema , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Filogenia , RNA Ribossômico 16S/genética
11.
Mar Drugs ; 14(5)2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27164116

RESUMO

The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.


Assuntos
Neurônios/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Compostos de Sulfônio/farmacologia , Tropolona/análogos & derivados , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Roseobacter/metabolismo , Tropolona/efeitos adversos , Tubulina (Proteína)/efeitos dos fármacos
12.
Environ Microbiol ; 17(10): 3822-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25753990

RESUMO

The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides.


Assuntos
Alphaproteobacteria/metabolismo , Alteromonadaceae/metabolismo , Bacteroidetes/metabolismo , Consórcios Microbianos/fisiologia , Polissacarídeos/metabolismo , Alginatos/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alteromonadaceae/genética , Alteromonadaceae/crescimento & desenvolvimento , Regiões Antárticas , Oceano Atlântico , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Quitina/metabolismo , Temperatura Baixa , Ecossistema , Geografia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Oceanos e Mares , RNA Ribossômico 16S/genética
13.
Environ Microbiol ; 17(10): 3857-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25847866

RESUMO

The marine bacterium Alteromonas macleodii is a copiotrophic r-strategist, but little is known about its potential to degrade polysaccharides. Here, we studied the degradation of alginate and other algal polysaccharides by A. macleodii strain 83-1 in comparison to other A. macleodii strains. Cell densities of strain 83-1 with alginate as sole carbon source were comparable to those with glucose, but the exponential phase was delayed. The genome of 83-1 was found to harbour an alginolytic system comprising five alginate lyases, whose expression was induced by alginate. The alginolytic system contains additional CAZymes, including two TonB-dependent receptors, and is part of a 24 kb genomic island unique to the A. macleodii 'surface clade' ecotype. In contrast, strains of the 'deep clade' ecotype contain only a single alginate lyase in a separate 7 kb island. This difference was reflected in an eightfold greater efficiency of surface clade strains to grow on alginate. Strain 83-1 furthermore hydrolysed laminarin, pullulan and xylan, and corresponding polysaccharide utilization loci were detected in the genome. Alteromonas macleodii alginate lyases were predominantly detected in Atlantic Ocean metagenomes. The demonstrated hydrolytic capacities are likely of ecological relevance and represent another level of adaptation among A. macleodii ecotypes.


Assuntos
Alginatos/metabolismo , Alteromonas/metabolismo , Organismos Aquáticos/metabolismo , Metabolismo Energético/fisiologia , Polissacarídeo-Liases/genética , Alteromonas/genética , Alteromonas/isolamento & purificação , Organismos Aquáticos/genética , Oceano Atlântico , Proteínas de Bactérias/genética , Ecótipo , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Glucanos/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Proteínas de Membrana/genética , Metagenoma/genética , Polissacarídeo-Liases/metabolismo , Água do Mar/microbiologia , Xilanos/metabolismo
14.
Appl Environ Microbiol ; 81(7): 2408-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616803

RESUMO

Marine bacteria form one of the largest living surfaces on Earth, and their metabolic activity is of fundamental importance for global nutrient cycling. Here, we explored the largely unknown intracellular pathways in 25 microbes representing different classes of marine bacteria that use glucose: Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia of the Bacteriodetes phylum. We used (13)C isotope experiments to infer metabolic fluxes through their carbon core pathways. Notably, 90% of all strains studied use the Entner-Doudoroff (ED) pathway for glucose catabolism, whereas only 10% rely on the Embden-Meyerhof-Parnas (EMP) pathway. This result differed dramatically from the terrestrial model strains studied, which preferentially used the EMP pathway yielding high levels of ATP. Strains using the ED pathway exhibited a more robust resistance against the oxidative stress typically found in this environment. An important feature contributing to the preferential use of the ED pathway in the oceans could therefore be enhanced supply of NADPH through this pathway. The marine bacteria studied did not specifically rely on a distinct anaplerotic route, but the carboxylation of phosphoenolpyruvate (PEP) or pyruvate for fueling of the tricarboxylic acid (TCA) cycle was evenly distributed. The marine isolates studied belong to clades that dominate the uptake of glucose, a major carbon source for bacteria in seawater. Therefore, the ED pathway may play a significant role in the cycling of mono- and polysaccharides by bacterial communities in marine ecosystems.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Glicólise , Marcação por Isótopo , Análise do Fluxo Metabólico , Organismos Aquáticos/genética , Bactérias/genética , Ciclo do Ácido Cítrico , Dados de Sequência Molecular , Fosfoenolpiruvato/metabolismo , Ácido Pirúvico/metabolismo , Análise de Sequência de DNA
15.
Int J Syst Evol Microbiol ; 65(Pt 6): 1967-1974, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25816810

RESUMO

A heterotrophic, Gram-negative, aerobic bacterium, designated strain SB1T, was isolated from surface water of the southern North Sea. Comparison of 16S rRNA gene sequences revealed that strain SB1T is affiliated to the genus Octadecabacter within the marine Roseobacter clade (family Rhodobacteraceae), with Octadecabacter antarcticus as the closest described species (98.2 % sequence similarity to the type strain). DNA-DNA hybridization indicated that SB1T represents a distinct species within this genus. On marine agar, strain SB1T formed beige, circular and convex colonies. Cells were irregular, motile rods. Growth occurred between 4 and 25 °C and was optimal at 20 °C, and at pH 7-9 (optimum pH 7.5-8.5) and NaCl concentrations between 1 and 6 % (optimum 2-4 %). The DNA G+C content of SB1T was 54.7 mol%. The fatty acids (>1 %) comprised 10 : 0 3-OH, 12 : 1 3-OH, 16 : 1ω7c, 16 : 0, 18 : 2ω7,12, 18 : 1ω7c, 18 : 0 and 11-methyl 18 : 1ω7c. The sole respiratory lipoquinone was ubiquinone Q-10 and the polar lipid pattern indicated the presence of the phospholipids phosphatidylglycerol and phosphatidylcholine, as well as unidentified aminolipid AL1, phospholipids PL1 and PL3 and lipids L1, L2 and L4. On the basis of phylogenetic and phenotypic differences, strain SB1T represents a novel species in the genus Octadecabacter, for which we propose the name Octadecabacter temperatus sp. nov. The type strain is SB1T ( = DSM 26878T = LMG 27946T). Furthermore, our results suggest the reclassification of Octadecabacter jejudonensis as the type species of a new genus, Pseudooctadecabacter gen. nov., as Pseudooctadecabacter jejudonensis comb. nov. (type strain SSK2-1T = KCTC 32535T = CECT 8397T). Finally, emended descriptions of the genus Octadecabacter and its species Octadecabacter antarcticus and Octadecabacter arcticus are also provided.


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Processos Heterotróficos , Dados de Sequência Molecular , Mar do Norte , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
16.
Mar Drugs ; 13(12): 7113-23, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633426

RESUMO

The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3-0.5 µg/mL (1.4-2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca(2+)-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death.


Assuntos
Morte Celular/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tropolona/análogos & derivados , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Roseobacter/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Tropolona/administração & dosagem , Tropolona/isolamento & purificação , Tropolona/toxicidade
17.
Int J Syst Evol Microbiol ; 63(Pt 3): 835-843, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22611199

RESUMO

A heterotrophic, Gram-stain-negative, aerobic bacterium, designated strain SH4-1(T), was obtained from a seawater sample collected from the southern North Sea during a phytoplankton bloom. The 16S rRNA gene sequence comparison revealed affiliation to the Roseobacter clade (class Alphaproteobacteria) with Sulfitobacter marinus SW-265(T) as the most closely related characterized strain, showing 97.2 % 16S rRNA gene sequence similarity. Calculation of phylogenetic trees based on 16S rRNA gene sequences indicated, however, that members of the genus Roseobacter, Roseobacter denitrificans Och 114(T) and Roseobacter litoralis Och 149(T) (95 % and 96 % sequence similarity, respectively) fall between strain SH4-1(T) and the Sulfitobacter cluster including Oceanibulbus indolifex HEL-45(T) (≥95.4 % sequence similarity). Cells of strain SH4-1(T) are irregular rods with at least one flagellum. Optimal growth occurred between 28 and 32 °C and at a pH between 7.0 and 8.5. Cells require the vitamin nicotinic acid amide as well as sodium ions for growth. The DNA G+C content was 55.1 mol%. The fatty acids (>1 %) comprised C10 : 0 3-OH, C12 : 1, C14 : 1 3-OH, C16 : 0, C18 : 0, C18 : 2, C18 : 1ω7c and 11-methyl C18 : 1ω7c. The polar lipid pattern indicated the presence of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, an unidentified aminolipid, one unidentified phospholipid and one other unidentified lipid. On the basis of phenotypic, chemotaxonomic and phylogenetic differences, strain SH4-1(T) represents a novel species in a new genus within the family Rhodobacteraceae, for which we propose the name Pelagimonas varians gen. nov., sp. nov. The type strain of the type species is SH4-1(T) ( = DSM 23678(T) = LMG 26343(T) = CIP 110297(T)).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Mar do Norte , Fosfolipídeos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA
18.
Int J Syst Evol Microbiol ; 63(Pt 11): 4207-4217, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23793856

RESUMO

Four heterotrophic bacterial strains belonging to the globally distributed marine RCA (Roseobacter clade-affiliated) cluster (family Rhodobacteraceae, class Alphaproteobacteria) were obtained from coastal seawater samples. Strain RCA23(T) was isolated from a 10(-7) dilution culture inoculated with seawater from the German Wadden Sea (southern North Sea), reflecting the high abundance of RCA bacteria in this habitat. Strains IMCC1909, IMCC1923 and IMCC1933 were isolated from diluted seawater (10(-3)) of the Yellow Sea, South Korea. Based on 16S rRNA gene sequence comparison, Octadecabacter antarcticus 307(T) is the closest described relative of the RCA strains, with 95.4-95.5 % sequence similarity. Cells of RCA23(T), IMCC1909, IMCC1923 and IMCC1933 are small motile rods requiring sodium ions. Optimal growth of RCA23(T) occurs at 25 °C and within a very narrow pH range (pH 7-8, optimum pH 7.5). The DNA G+C base content of RCA23(T) is 53.67 mol%. The major respiratory lipoquinone is ubiquinone-10 (Q-10) and the dominant fatty acids (>1 %) are 12 : 1 3-OH, 16 : 1ω7c, 16 : 0, 18 : 1ω7c, 18 : 0 and 11-methyl 18 : 1ω7c. The polar lipid pattern indicated the presence of phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. On marine agar, RCA23(T) forms non-pigmented, transparent to light beige, small (<1 mm), circular, convex colonies. Strain RCA23(T) harbours all genes for the production of bacteriochlorophyll a (BChl a). Genes encoding the light-harvesting reaction centre of BChl a (pufM) were identified in all RCA strains. No visible pigmentation was observed for any of the strains under laboratory conditions, but spectrophotometric analysis revealed weak production of BChl a by RCA23(T). Morphological, physiological and genotypic features of strain RCA23(T) suggest that it represents a novel species of a new genus within the Rhodobacteraceae, for which we propose the name Planktomarina temperata gen. nov., sp. nov., described previously by Giebel et al. [ISME J 5 (2011), 8-19] as 'Candidatus Planktomarina temperata'. The type strain of Planktomarina temperata is RCA23(T) ( = DSM 22400(T) = JCM 18269(T)).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacterioclorofila A/genética , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Alemanha , Processos Heterotróficos , Dados de Sequência Molecular , Mar do Norte , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
19.
Beilstein J Org Chem ; 9: 942-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766810

RESUMO

Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP) via competing pathways releasing either methanethiol (MeSH) or dimethyl sulfide (DMS). Deuterium-labeled [(2)H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP) were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC-MS. Feeding experiments with [(2)H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [(2)H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [(2)H3]methionine and (34)SO4 (2-), synthesized from elemental (34)S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

20.
Nat Commun ; 14(1): 6141, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783696

RESUMO

Major biogeographic features of the microbial seascape in the oceans have been established and their underlying ecological mechanisms in the (sub)tropical oceans and the Pacific Ocean identified. However, we still lack a unifying understanding of how prokaryotic communities and biogeographic patterns are affected by large-scale current systems in distinct ocean basins and how they are globally shaped in line with ecological mechanisms. Here we show that prokaryotic communities in the epipelagic Pacific and Atlantic Ocean, in the southern Indian Ocean, and the Mediterranean Sea are composed of modules of co-occurring taxa with similar environmental preferences. The relative partitioning of these modules varies along latitudinal and longitudinal gradients and are related to different hydrographic and biotic conditions. Homogeneous selection and dispersal limitation were identified as the major ecological mechanisms shaping these communities and their free-living (FL) and particle-associated (PA) fractions. Large-scale current systems govern the dispersal of prokaryotic modules leading to the highest diversity near subtropical fronts.


Assuntos
Filogenia , Oceanos e Mares , Oceano Pacífico , Oceano Atlântico , Oceano Índico , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa