Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Org Chem ; 86(9): 6207-6227, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843216

RESUMO

The binary hydride, diisobutylaluminum borohydride [(iBu)2AlBH4], synthesized from diisobutylaluminum hydride (DIBAL) and borane dimethyl sulfide (BMS) has shown great potential in reducing a variety of organic functional groups. This unique binary hydride, (iBu)2AlBH4, is readily synthesized, versatile, and simple to use. Aldehydes, ketones, esters, and epoxides are reduced very fast to the corresponding alcohols in essentially quantitative yields. This binary hydride can reduce tertiary amides rapidly to the corresponding amines at 25 °C in an efficient manner. Furthermore, nitriles are converted into the corresponding amines in essentially quantitative yields. These reactions occur under ambient conditions and are completed in an hour or less. The reduction products are isolated through a simple acid-base extraction and without the use of column chromatography. Further investigation showed that (iBu)2AlBH4 has the potential to be a selective hydride donor as shown through a series of competitive reactions. Similarities and differences between (iBu)2AlBH4, DIBAL, and BMS are discussed.


Assuntos
Compostos Organometálicos , Aldeídos , Boroidretos , Oxirredução
2.
J Org Chem ; 83(3): 1431-1440, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341612

RESUMO

Rapid reaction of NaBH4 with MeOH precludes its use as a solvent for large-scale ester reductions. We have now learned that a catalytic amount of NaOMe (5 mol %) stabilizes NaBH4 solutions in methanol at 25 °C and permits the use of these solutions for the reduction of esters to alcohols. The generality of this reduction method was demonstrated using 22 esters including esters of naturally occurring chiral γ-butyrolactone containing dicarboxylic acids. This method permits the chemoselective reductions of esters in the presence of cyano and nitro groups and the reductive cyclization of a pyrrolidinedione ester to a fused five-membered furo[2,3-b]pyrrole and a (-)-crispine A analogue in high optical and chemical yields. Lactones, aliphatic esters, aromatic esters containing electron-withdrawing groups, and heteroaryl esters are reduced more rapidly than aryl esters containing electron-donating groups. The 11B NMR spectrum of the NaOMe-stabilized NaBH4 solutions showed a minor quartet  due to monomethoxyborohydride (NaBH3OMe) that persisted up to 18 h at 25 °C. We postulate that NaBH3OMe is probably the active reducing agent. In support of this hypothesis, the activation barrier for hydride transfer from BH3(OMe)- onto benzoic acid methyl ester was calculated as 18.3 kcal/mol.

3.
Org Biomol Chem ; 15(45): 9727-9733, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29130464

RESUMO

To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.


Assuntos
Ácidos Borônicos/química , Carboidratos/análise , Fluorescência , Corantes Fluorescentes/química , Monossacarídeos/química , Sacarose/análogos & derivados , Pesquisa Biomédica , Sacarose/química
4.
Nano Lett ; 16(2): 1194-200, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26752097

RESUMO

Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of ß-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/metabolismo , Glucose/isolamento & purificação , Neoplasias da Mama/patologia , Proliferação de Células , Enzimas Imobilizadas/química , Feminino , Gluconatos/química , Glucose/metabolismo , Glucose Oxidase/química , Humanos , Células MCF-7 , Metástase Neoplásica , Fosforilação Oxidativa , Análise de Célula Única
5.
Anal Chem ; 88(10): 5444-52, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27116118

RESUMO

With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 µM, LOQ 72 µM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible.


Assuntos
Ácidos Borônicos/química , Espectrometria de Fluorescência , Álcoois Açúcares/análise , Viologênios/química , Análise Discriminante , Corantes Fluorescentes/química , Lactulose/análise , Limite de Detecção , Manitol/análise , Permeabilidade , Análise de Componente Principal , Xilose/análise
6.
J Org Chem ; 81(9): 3619-28, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27035215

RESUMO

Dialkylboranes and aminoborohydrides are mild, selective reducing agents complementary to the commonly utilized amide reducing agents, such as lithium aluminum hydride (LiAlH4) and diisobutylaluminum hydride (DIBAL) reagents. Tertiary amides were reduced using 1 or 2 equiv of various dialkylboranes. The reduction of tertiary amides required 2 equiv of 9-borabicyclo[3.3.1]nonane (9-BBN) for complete reduction to give the corresponding tertiary amines. One equivalent of sterically hindered disiamylborane reacts with tertiary amides to afford the corresponding aldehydes. Aminoborohydrides are powerful and selective reducing agents for the reduction of tertiary amides. Lithium dimethylaminoborohydride and lithium diisopropylaminoborohydride are prepared from n-butyllithium and the corresponding amine-borane. Chloromagnesium dimethylaminoborohydride (ClMg(+)[H3B-NMe2](-), MgAB) is prepared by the reaction of dimethylamine-borane with methylmagnesium chloride. Solutions of aminoborohydride reduce aliphatic, aromatic, and heteroaromatic tertiary amides to give the corresponding alcohol, amine, or aldehyde depending on the steric requirement of the tertiary amide and the aminoborohydride used.

7.
J Org Chem ; 77(2): 889-98, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22148263

RESUMO

We report a simple, efficient, and general method for the indium-mediated enantioselective propargylation of aromatic and aliphatic aldehydes under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 90%) and enantiomeric excess (up to 95%). The extension of this methodology to ketones demonstrated the need for electrophilic ketones more reactive than acetophenone as the reaction would not proceed with just acetophenone. Using the Lewis acid indium triflate [In(OTf)(3)] induced regioselective formation of the corresponding homoallenic alcohol product from acetophenone. However, this methodology demonstrated excellent chemoselectivity in formation of only the corresponding secondary homopropargylic alcohol product in the presence of a ketone functionality. Investigation of the organoindium intermediates under our reaction conditions shows the formation of allenylindium species, and we suggest that these species contain an indium(III) center. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.


Assuntos
Aldeídos/química , Índio/química , Cetonas/química , Pargilina/análogos & derivados , Acetofenonas/química , Técnicas de Química Sintética , Mesilatos/química , Estrutura Molecular , Compostos Organometálicos , Pargilina/química , Estereoisomerismo
8.
J Org Chem ; 77(9): 4342-53, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22497595

RESUMO

We report the first one-pot process for the asymmetric addition of allyl, methallyl, and propargyl groups to aldehydes and ketones using B-chlorodiisopinocampheylborane ((d)DIP-Cl) and indium metal. Under Barbier-type conditions, indium metal was used to generate allyl- and allenylindium intermediates, and subsequent reaction with (d)DIP-Cl successfully promoted the transfer of these groups to boron forming the corresponding chiral borane reagents. The newly formed borane reagents were reacted with aldehydes and ketones to produce the corresponding alcohol products in high yields and up to excellent enantioselectivity (98% ee). This method produced excellent enantioenriched secondary homoallylic alcohols from the allylation and methallylation of benzaldehyde. Using this method, the methallylation and cinnamylation of ketones afforded the highest enantioselectivities, while the propargylation of both aldehydes and ketones provided low enantiomeric excesses. In addition, this procedure provided the first synthesis of B-allenyldiisopinocampheylborane, which was characterized by (1)H and (11)B NMR spectroscopy. This is the first example of the direct synthesis of allylboranes that contained substitutions from the corresponding allyl bromide and indium, thereby expanding the utility of the DIP-Cl reagent. Hence, a general and straightforward route to these chiral organoborane reagents in one-pot has been developed along with the asymmetric Barbier-type allylation and propargylation of aldehyde and ketone substrates using these chiral organoborane reagents in subsequent coupling reactions.

9.
J Org Chem ; 77(1): 221-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22148510

RESUMO

While alternative methods of preparing dichloroindium hydride (HInCl(2)) via the in situ reduction of InCl(3) using lithium amino borohydride (LAB) were explored, generation of HInCl(2) from the reduction of InCl(3) by sodium borohydride (NaBH(4)) was also re-evaluated for comparison. The reductive capability of the InCl(3)/NaBH(4) system was found to be highly dependent on the solvent used. Investigation by (11)B NMR spectroscopic analyses indicated that the reaction of InCl(3) with NaBH(4) in THF generates HInCl(2) along with borane-tetrahydrofuran (BH(3)·THF) in situ. Nitriles underwent reduction to primary amines under optimized conditions at 25 °C using 1 equiv of anhydrous InCl(3) with 3 equiv of NaBH(4) in THF. A variety of aromatic, heteroaromatic, and aliphatic nitriles were reduced to their corresponding primary amine in 70-99% isolated yields. Alkyl halide and nitrile functional groups were reduced in tandem by utilizing the reductive capabilities of both HInCl(2) and BH(3)·THF in a one-pot reaction. Finally, the selective reduction of the carbon bromine bond in the presence of nitriles was achieved by generating HInCl(2) via the reduction InCl(3) with NaBH(4) in CH(3)CN or with lithium dimethylaminoborohydride (MeLAB) in THF.

10.
J Org Chem ; 76(23): 9602-10, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22040316

RESUMO

Grignard reagents (aliphatic, aromatic, heteroaromatic, vinyl, or allylic) react with 1 equiv of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (pinacolborane, PinBH) at ambient temperature in tetrahydrofuran (THF) to afford the corresponding pinacolboronates. The initially formed dialkoxy alkylborohydride intermediate quickly eliminates hydridomagnesium bromide (HMgBr) and affords the product boronic ester in very good yield. Hydridomagnesium bromide (HMgBr) in turn disproportionates to a 1:1 mixture of magnesium hydride (MgH(2)) and magnesium bromide (MgBr(2)) on addition of pentane to the reaction mixture. DFT calculations (Gaussian09) at the B3LYP/6-31G(d) level of theory show that disproportionation of HMgBr to MgH(2) and MgBr(2) is viable in the coordinating ethereal solvents. This reaction also can be carried out under Barbier conditions, where the neat PinBH is added to the flask prior to the in situ formation of Grignard reagent from the corresponding organic halide and magnesium metal. Pinacolboronic ester synthesis under Barbier conditions does not give Wurtz coupling side products from reactive halides, such as benzylic and allylic halides. The reaction between PinBH and various Grignard reagents is an efficient, mild, and general method for the synthesis of pinacolboronates.


Assuntos
Boranos/química , Ácidos Borônicos/síntese química , Ésteres/síntese química , Halogênios/química , Hidrogênio/química , Compostos Organometálicos/química , Ácidos Borônicos/química , Ésteres/química , Estrutura Molecular , Estereoisomerismo
11.
J Org Chem ; 75(3): 642-9, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20027999

RESUMO

We report a simple, efficient, and general method for the indium-mediated enantioselective allylation of aromatic and aliphatic aldehydes and ketones under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 99%) and enantiomeric excess (up to 93%). Our method is able to tolerate various functional groups, such as esters, nitriles, and phenols. Additionally, more substituted allyl bromides, such as crotyl and cinnamyl bromide, can be used providing moderate enantioselectivity (72% and 56%, respectively) and excellent diastereoselectivity when employing cinnamyl bromide (>95/5 anti/syn). However, the distereoselectivity when using crotyl bromide was poor and other functionalized allyl bromides under our method afforded low enantioselectivities for the alcohol products. In these types of indium-mediated additions, solvent plays a major role in determining the nature of the organoindium intermediate and we observed the susceptibility of some allylindium intermediates to hydrolysis in protic solvents. Under our reaction conditions using a polar aprotic solvent, we suggest that an allylindium(III) species is the active allylating intermediate. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.


Assuntos
Aldeídos/química , Alcenos/química , Compostos Alílicos/química , Índio/química , Cetonas/química , Compostos Organometálicos/química , Catálise , Reagentes de Ligações Cruzadas , Indicadores e Reagentes , Estereoisomerismo , Relação Estrutura-Atividade
12.
J Org Chem ; 75(22): 7717-25, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21033682

RESUMO

A facile and mild reduction procedure is reported for the preparation of chiral allylic and propargyl alcohols in high enantiomeric purity. Under optimized conditions, alkynyl and alkenyl ketones were reduced by TarB-NO2 and NaBH4 at 25 °C in 1 h to produce chiral propargyl and allylic alcohols with enantiomeric excesses and yields up to 99%. In the case of α,ß-unsaturated alkenyl ketones, α-substituted cycloalkenones were reduced with up to 99% ee, while more substituted and acyclic derivatives exhibited lower induction. For α,ß-ynones, it was found that highly branched aliphatic ynones were reduced with optimal induction up to 90% ee, while reduction of aromatic and linear aliphatic derivatives resulted in more modest enantioselectivity. Using the (L)-TarB-NO2 reagent derived from (L)-tartaric acid, we routinely obtained highly enantioenriched chiral allylic and propargyl alcohols with (R) configuration. Since previous models and a reduction of a saturated analogue predicted propargyl products of (S) configuration, a series of new mechanistic studies were conducted to determine the likely orientation of aromatic, alkenyl, and alkynyl ketones in the transition state.

13.
J Org Chem ; 74(5): 1964-70, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19191712

RESUMO

Diisopropylaminoborane [BH(2)N(iPr)(2)] in the presence of a catalytic amount of lithium borohydride (LiBH(4)) reduces a large variety of aliphatic and aromatic nitriles in excellent yields. BH(2)N(iPr)(2) can be prepared by two methods: first by reacting diisopropylamineborane [(iPr)(2)N:BH(3)] with 1.1 equiv of n-butyllithium (n-BuLi) followed by methyl iodide (MeI), or reacting iPrN:BH(3) with 1 equiv of n-BuLi followed by trimethylsilyl chloride (TMSCl). BH(2)N(iPr)(2) prepared with MeI was found to reduce benzonitriles to the corresponding benzylamines at ambient temperatures, whereas diisopropylaminoborane prepared with TMSCl does not reduce nitriles unless a catalytic amount of a lithium ion source, such as LiBH(4) or lithium tetraphenylborate (LiBPh(4)), is added to the reaction. The reductions of benzonitriles with one or more electron-withdrawing groups on the aromatic ring generally occur much faster with higher yields. For example, 2,4-dichlorobenzonitrile was successfully reduced to 2,4-dichlorobenzylamine in 99% yield after 5 h at 25 degrees C. On the other hand, benzonitriles containing electron-donating groups on the aromatic ring require refluxing in tetrahydrofuran (THF) for complete reduction. For instance, 4-methoxybenzonitrile was successfully reduced to 4-methoxybenzylamine in 80% yield. Aliphatic nitriles can also be reduced by the BH(2)N(iPr)(2)/cat. LiBH(4) reducing system. Benzyl cyanide was reduced to phenethylamine in 83% yield. BH(2)N(iPr)(2) can also reduce nitriles in the presence of unconjugated alkenes and alkynes such as the reduction of 2-hexynenitrile to hex-5-yn-1-amine in 80% yield. Unfortunately, selective reduction of a nitrile in the presence of an aldehyde is not possible as aldehydes are reduced along with the nitrile. However, selective reduction of the nitrile group at 25 degrees C in the presence of an ester is possible as long as the nitrile group is activated by an electron-withdrawing substituent. It should be pointed out that lithium aminoborohydrides (LABs) do not reduce nitriles under ambient conditions and behave as bases with aliphatic nitriles as well as nitriles containing acidic alpha-protons. Consequently, both LABs and BH(2)N(iPr)(2) are complementary to each other and offer methods for the selective reductions of multifunctional compounds.


Assuntos
Aminas/síntese química , Boranos/química , Nitrilas/química , Aminas/química , Estrutura Molecular , Oxirredução , Estereoisomerismo
14.
J Org Chem ; 74(6): 2337-43, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19216500

RESUMO

(+)-Nopinone, prepared from naturally occurring (-)-beta-pinene, was converted to the two regioisomeric amino alcohols 3-MAP and 2-MAP in very good yield and excellent isomeric purity. Amino alcohol 3-MAP was synthesized by converting (+)-nopinone to the corresponding alpha-ketooxime. This was reduced to the primary amino alcohol and was converted to the morpholino group through a simple substitution reaction. 3-MAP was characterized by X-ray crystallography, which displayed the rigidity of the pinane framework. Amino alcohol 2-MAP was prepared from its trans isomer 2, which in turn was synthesized via hydroboration/oxidation of the morpholine enamine of (+)-nopinone. Two-dimensional NMR was used to characterize amino alcohol 2-MAP, and NOE was used to confirm its relative stereochemistry. These amino alcohols were employed as chiral auxiliaries in the addition of diethylzinc to benzaldehyde to obtain near-quantitative asymmetric induction in the products. The use of 3-MAP yielded (S)-phenylpropanol in 99% ee, and its regioisomer 2-MAP gave the opposite enantiomer, (R)-phenylpropanol, also in 99% ee. Other aromatic, aliphatic, and alpha,beta-unsaturated aldehydes were implemented in this method, affording secondary alcohols in high yield and enantiomeric excess. Amino alcohols 2-MAP and 3-MAP were also found to be useful in the dimethylzinc addition reaction, both catalyzing the addition to benzaldehyde with nearly quantitative ee. Regioisomeric amino alcohols 2-MAP and 3-MAP, even though they were prepared from one enantiomer of nopinone, provide antipodal enantiofacial selectivity in the dialkylzinc addition reaction. This circumvents the necessity to synthesize amino alcohols derived from (-)-nopinone, which in turn requires the unnatural (+)-beta-pinene. Possible mechanistic insights are offered to explain the dual stereoselectivity observed in the diethylzinc addition reaction involving regioisomeric, pseudo-enantiomeric amino alcohols 3-MAP and 2-MAP.


Assuntos
Amino Álcoois/química , Compostos Organometálicos/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Estereoisomerismo , Zinco
15.
Org Biomol Chem ; 7(7): 1461-70, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19300833

RESUMO

The anionic fluorescent dye, aminopyrene trisulfonic acid (APTS), was synthesized and used in a solution-based two-component glucose-sensing system comprising the dye and a boronic acid-appended viologen. The fluorescence of the dye was quenched in the presence of the viologen and the fluorescence restored upon glucose addition. An important feature of this fluorophore is that it can be covalently bonded to a polymer through the amine group without a significant effect on optical properties. Two APTS derivatives, functionalized with polymerizable groups, were synthesized and immobilized in hydroxyethyl methacrylate (HEMA)-based hydrogels. The latter were used to continuously monitor glucose. The fluorescence signal modulation, signal stability, reversibility, reproducibility, and pH sensitivity of the hydrogels were evaluated. The APTS dyes described herein are insensitive to pH changes within the physiological range, both in solution and when immobilized in a hydrogel. When APTS is used in conjunction with boronic acid-appended viologens to sense glucose, the system displays some pH sensitivity because of the presence of the boronic acid.


Assuntos
Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Glucose/análise , Pirenos/química , Ácidos Borônicos/química , Fluorescência , Corantes Fluorescentes/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Pirenos/síntese química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Fluorescência , Estereoisomerismo , Fatores de Tempo , Viologênios/química
16.
Tetrahedron Lett ; 49(17): 2764-2767, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19946457

RESUMO

The sodium periodate mediated oxidative cleavage of the C-C bond of twelve epoxides is reported with yields of the corresponding carbonyl compounds in up to 91%. This is a two-step reaction that proceeds through a rate-limiting epoxide opening to a vicinal diol that is cleaved in situ to the corresponding carbonyl compound. This method serves as a chemoselective alternative to ozonolysis.

17.
Diabetes Technol Ther ; 8(3): 279-87, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16800749

RESUMO

BACKGROUND: There continues to be a need for better sensors for continuous glucose monitoring. We are working on a two-component sensing system based on a viologen boronic acid and a fluorescent dye, which are immobilized in a hydrogel. This system has the potential for further development into a real-time glucose-monitoring device. The current study reports the fabrication of sensors using preformed hydrogels and the first in vitro monitoring of glucose concentrations in a prototype sensor configuration. METHODS: Glucose sensing hydrogels containing a fluorescent dye and viologen boronic acid quencher were preformed in a mold. These preformed hydrogels were then attached to the distal end of a plastic fiber optic cable using different adhesives to prepare the in vitro sensors. These sensors were connected to a flow cell and monitored using a fluorescence spectrometer. The fluorescence emitted by the hydrogel changes depending on the glucose concentration. Hydrogel components were modified in order to optimize the performance of the sensors. RESULTS: A soft tissue adhesive used by veterinarians was found to be an effective adhesive for bonding the hydrogel to the fiber tip. This adhesive did not affect the glucose sensing ability of the hydrogels after fabrication. Several sensors were fabricated with varying composition of sensing elements, and all of them showed stable and reversible glucose response. The glucose signal was found to be stable over months on repeated testing. Glucose sensing studies using the sensors with hydrogels containing different compositions of sensing elements showed that the ratio of dye to quencher is an important parameter in determining the magnitude and linearity of glucose response in the biological range. The response time of the sensor was shown to be dependent on the hydrophilicity of the hydrogels. Modifying the hydrogels with ionic comonomers shortened the response time. CONCLUSIONS: The combination of the anionic dye 2 and viologen-based boronic acid 1 immobilized in a 2-hydroxyethyl methacrylate hydrogel functions well in a fiber optic configuration. This preliminary study suggests that the two-component sensing system has several advantages in terms of stability and ease of fabrication. Improvement of the configuration of the sensor and further development of the sensor towards application for in vitro study are underway.


Assuntos
Tecnologia de Fibra Óptica , Glucose/análise , Monitoramento de Medicamentos , Corantes Fluorescentes , Hidrogéis , Cinética , Monitorização Fisiológica , Filmes Cinematográficos , Fibras Ópticas , Espectrometria de Fluorescência , Água/análise
18.
Clin Chim Acta ; 439: 115-21, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25300228

RESUMO

BACKGROUND: Although organoboronic acids are efficient high-throughput sugar sensors, they have not been pursued for gut permeability studies. A modification of the lactulose/mannitol assay is described by which small intestinal permeability is assessed at the time of urine collection using a lactulose/riboflavin ratio. METHODS: Volunteers ingested 50mg riboflavin and either 5 g mannitol or 10 g lactulose. Urine was collected for 6 hrs. Riboflavin was assayed by autofluorescence. Riboflavin was removed by C18 solid phase extraction. Lactulose and mannitol were then assayed using 1,1'-bis(2-boronobenzyl)-4,4'-bipyridinium (4,4'oBBV) coupled to the fluorophore HPTS. RESULTS: The temporal profile over 6 hrs for riboflavin paralleled mannitol. Riboflavin recovery in urine was 11.1 ± 1.9 % (mean ± SEM, n=7), similar to mannitol. There was selective binding of 4,4'oBBV to lactulose, likely involving cooperativity between the fructose and galactose moieties. Lower limits of detection and quantification were 90 and 364 µM. The lactulose assay was insensitive to other permeability probes (e.g., sucrose, sucralose) while tolerating glucose or lactose. This assay can be adapted to automated systems. Stability of 4,4'oBBV exceeds 4 years. CONCLUSIONS: Riboflavin measured by autofluorescence combined with lactulose measured with 4,4'oBBV represents a useful new chemistry for rapid measurement of intestinal permeability with excellent stability, cost and throughput benefits.


Assuntos
Benzil Viologênio/química , Ácidos Borônicos/química , Intestino Delgado/metabolismo , Lactulose/urina , Permeabilidade , Riboflavina/urina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Org Lett ; 17(17): 4368-71, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26284657

RESUMO

Asymmetric hydroboration of 1,3-cyclohexadiene with 4R produces the allylborane 5RR as essentially a single diastereomer (i.e., no observable 5RS), and its addition to representative aldehydes provides 9RS (52-75%) with excellent selectivity (94-99% ee). By contrast, a similar sequence with the 10-Ph-BBD reagent, 14R, results in a ca. 45:55 mixture of 15RR and 15RS. However, their addition to methyl ketones provides the corresponding 3°-homoallylic alcohols (18RS) with excellent selectivity (80-99% ee) but in low yields (15-52%) because 15RS is unreactive toward either allylboration or isomerization to 15RR. Thus, with 2 equiv of 15, the yield of 18 (R = Ph) is increased from 52% to 85%. Boranes 5SS and 15SS provide enantiomeric alcohols.

20.
Org Lett ; 5(21): 3867-70, 2003 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-14535730

RESUMO

[reaction: see text] Lithium aminoborohydride (LAB) reagents promote the amination of 2-fluoropyridine under mild reaction conditions, providing 2-(dialkylamino)pyridines in excellent yield and purity. Treatment of 2-fluoropyridine with 1.1 equiv of lithium aminoborohydride at room temperature affords complete conversion after 1 h. This is the first general way by which 2-(dialkylamino)pyridines may be directly obtained from fluoropyridines under ambient reaction conditions. 2-Chloropyridine can also be converted to 2-(dialkylamino)pyridine by simply increasing the number of LAB equivalents and the reaction temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa