Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 104(1): 240-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37799016

RESUMO

Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13 C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15 N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15 N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13 C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15 N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.


Assuntos
Estuários , Peixes , Humanos , Animais , São Francisco , Dieta , Isótopos
2.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873359

RESUMO

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

3.
BMC Musculoskelet Disord ; 23(1): 72, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045839

RESUMO

BACKGROUND: In recent years, total hip arthroplasty via the direct anterior approach (DAA) has become more common. Little is known on the influence of the surgical approach on the microbiological spectrum and resistance pattern in periprosthetic hip joint infections. The aim of the present study was to evaluate the microbiological spectrum and resistance pattern in periprosthetic hip joint infections comparing the direct anterior versus lateral approach in a matched-cohort analysis at a single institution. METHODS: Patients who underwent revision hip arthroplasty due to PJI following primary total hip arthroplasty with culture positive microbiology were analyzed. In all study patients, both the primary surgery and the revisions surgery were performed at the same institution. Only patients in whom primary surgery was performed via a direct anterior or lateral approach were included (n = 87). A matched cohort analysis was performed to compare the microbiological spectrum and resistance pattern in PJI following direct anterior (n = 36) versus lateral (n = 36) primary THA. RESULTS: We identified both a significantly different microbiological spectrum and resistance pattern in PJI comparing direct anterior versus lateral approach THA. Cutibacterium avidum was obtained more frequently in the anterior subgroup (22.2% vs. 2.8%, p = 0.028). In the subgroup of infections with Staphylococcus aureus (n = 12), methicillin resistance was detected in 3/5 cases in the direct anterior group versus 0/7 cases in the lateral group (p = 0.045). Overall, Staphylococcus epidermidis was the most common causative microorganism in both groups (direct anterior: 36.1%; lateral: 27.8%, p = 0.448). CONCLUSION: The present study indicates a potential influence of the localization of the skin incision in THA on the microbiological spectrum and resistance pattern in PJI. Cutibacterium avidum seemed to be a more common causative microorganism in PJI in patients who underwent direct anterior compared to lateral approach THA.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Infecções Relacionadas à Prótese , Artroplastia de Quadril/efeitos adversos , Estudos de Coortes , Articulação do Quadril , Prótese de Quadril/efeitos adversos , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/epidemiologia , Reoperação , Estudos Retrospectivos , Fatores de Risco
4.
Anal Chem ; 92(3): 2558-2565, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887024

RESUMO

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost.

5.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298576

RESUMO

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

6.
Proc Biol Sci ; 287(1926): 20193000, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345142

RESUMO

In many regions of the world, populations of large wildlife have been displaced by livestock, and this may change the functioning of aquatic ecosystems owing to significant differences in the quantity and quality of their dung. We developed a model for estimating loading rates of organic matter (dung) by cattle for comparison with estimated rates for hippopotamus in the Mara River, Kenya. We then conducted a replicated mesocosm experiment to measure ecosystem effects of nutrient and carbon inputs associated with dung from livestock (cattle) versus large wildlife (hippopotamus). Our loading model shows that per capita dung input by cattle is lower than for hippos, but total dung inputs by cattle constitute a significant portion of loading from large herbivores owing to the large numbers of cattle on the landscape. Cattle dung transfers higher amounts of limiting nutrients, major ions and dissolved organic carbon to aquatic ecosystems relative to hippo dung, and gross primary production and microbial biomass were higher in cattle dung treatments than in hippo dung treatments. Our results demonstrate that different forms of animal dung may influence aquatic ecosystems in fundamentally different ways when introduced into aquatic ecosystems as a terrestrially derived resource subsidy.


Assuntos
Artiodáctilos/fisiologia , Bovinos , Ecossistema , Animais , Biomassa , Herbivoria , Quênia , Gado/fisiologia , Recursos Naturais , Rios
7.
Glob Chang Biol ; 25(12): 4234-4243, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31411780

RESUMO

Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conducive to high rates of methane (CH4 ) production and emission, suggesting a potentially important role in the global CH4 cycle. However, there is a lack of comprehensive flux data from diverse urban water bodies, of information on the underlying drivers, and of estimates for whole cities. Based on measurements over four seasons in a total of 32 water bodies in the city of Berlin, Germany, we calculate the total CH4 emission from various types of surface waters of a large city in temperate climate at 2.6 ± 1.7 Gg CH4 /year. The average total emission was 219 ± 490 mg CH4  m-2  day-1 . Water chemical variables were surprisingly poor predictors of total CH4 emissions, and proxies of productivity and oxygen conditions had low explanatory power as well, suggesting a complex combination of factors governing CH4 fluxes from urban surface waters. However, small water bodies (area <1 ha) typically located in urban green spaces were identified as emission hotspots. These results help constrain assessments of CH4 emissions from freshwaters in the world's growing cities, facilitating extrapolation of urban emissions to large areas, including at the global scale.


Assuntos
Ecossistema , Metano , Dióxido de Carbono , Cidades , Água Doce , Alemanha , Estações do Ano
8.
Environ Sci Technol ; 53(8): 4224-4234, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30905154

RESUMO

The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first-order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 ± 0.01 h for iopromide to 3.3 ± 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.


Assuntos
Carbono , Rios , Berlim , Alemanha , Compostos Orgânicos
9.
Proc Natl Acad Sci U S A ; 111(35): 12799-804, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136087

RESUMO

Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.


Assuntos
Biofilmes/crescimento & desenvolvimento , Ecossistema , Hidrologia/métodos , Microbiota/fisiologia , Modelos Estatísticos , Rios/microbiologia , Biodiversidade , Biomassa , Meio Ambiente , RNA Ribossômico 16S/fisiologia
10.
Limnol Oceanogr ; 61(3): 795-805, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27587899

RESUMO

Zooplankton blooms are a frequent phenomenon in tropical systems. However, drivers of bloom formation and the contribution of emerging resting eggs are largely unexplored. We investigated the dynamics and the triggers of rotifer blooms in African soda-lakes and assessed their impact on other trophic levels. A meta-analysis of rotifer peak densities including abundances of up to 6 × 105 individuals L-1 demonstrated that rotifer bloom formation was uncoupled from the food environment and the seasonality of climatic conditions. A time series with weekly sampling intervals from Lake Nakuru (Kenya) revealed that intrinsic growth factors (food quality and the physicochemical environment) significantly affected rotifer population fluctuations, but were of minor importance for bloom formation. Instead, rotifer bloom formation was linked to sediment resuspension, a prerequisite for hatching of resting-eggs. Population growth rates exceed pelagic birth rates and simulations of rotifer dynamics confirmed the quantitative importance of rotifer emergence from the sediment egg-bank and signifying a decoupling of bloom formation from pelagic reproduction. Rotifer blooms led to a top-down control of small-sized algae and facilitated a switch to more grazing-resistant, filamentous cyanobacteria. This shift in phytoplankton composition cascaded up the food chain and triggered the return of filter-feeding flamingos. Calculations of consequent changes in the lake's energy budget and export of aquatic primary production to terrestrial ecosystems demonstrated the large potential impact of nonseasonal disturbances on the functioning of shallow tropical lakes.

11.
Limnol Oceanogr ; 61(Suppl 1): S175-S187, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881883

RESUMO

River-floodplain systems are characterized by changing hydrological connectivity and variability of resources delivered to floodplain water bodies. Although the importance of hydrological events has been recognized, the effect of flooding on CH4 concentrations and emissions from European, human-impacted river-floodplains is largely unknown. This study evaluates aquatic concentrations and emissions of CH4 from a highly modified, yet partly restored river-floodplain system of the Danube near Vienna (Austria). We covered a broad range of hydrological conditions, including a 1-yr flood event in 2012 and a 100-yr flood in 2013. Our findings demonstrate that river-floodplain waters were supersaturated with CH4, hence always serving as a source of CH4 to the atmosphere. Hydrologically isolated habitats in general have higher concentrations and produce higher fluxes despite lower physically defined velocities. During surface connection, however, CH4 is exported from the floodplain to the river, suggesting that the main channel serves as an "exhaust pipe" for the floodplain. This mechanism was especially important during the 100-yr flood, when a clear pulse of CH4 was flushed from the floodplain with surface floodwaters. Our results emphasize the importance of floods differing in magnitude for methane evasion from river-floodplains; 34% more CH4 was emitted from the entire system during the year with the 100-yr flood compared to a hydrologically "normal" year. Compared to the main river channel, semiisolated floodplain waters were particularly strong sources of CH4. Our findings also imply that the predicted increased frequency of extreme flooding events will have significant consequences for methane emission from river-floodplain systems.

12.
New Phytol ; 205(1): 137-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195521

RESUMO

The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests.


Assuntos
Carbono/metabolismo , Floresta Úmida , Clima Tropical , Geografia , Modelos Teóricos , Folhas de Planta/fisiologia , Chuva , Análise de Regressão , Estações do Ano , Temperatura , Incerteza , Madeira/crescimento & desenvolvimento
13.
Environ Microbiol ; 16(8): 2514-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24428193

RESUMO

Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.


Assuntos
Bactérias/classificação , Camada de Gelo/microbiologia , Filogenia , Microbiologia da Água , Bactérias/genética , Biodiversidade , Biofilmes/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
14.
Gynecol Obstet Invest ; 77(4): 205-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23921074

RESUMO

Retroperitoneal ectopic pregnancies (REP) are extremely rare, and early diagnosis and treatment is very difficult. We completed an English literature search in MEDLINE through PubMed for articles on REP. We identified 14 articles (all case reports) but selected only 12 because of unavailable data in the other 2 articles. We also report the case of an REP which was misdiagnosed as ectopic choriocarcinoma. The 33-year-old woman was admitted via the outpatient department with a history of 54 days of amenorrhea and persistent elevated serum ß-human chorionic gonadotropin (hCG) levels. The presumed diagnosis ectopic choriocarcinoma was made based on imaging findings. Single-drug chemotherapy with methotrexate (MTX; 20-mg intramuscular injection daily for 5 consecutive days) was administered. An upper abdominal mass was noticed by the patient and laparotomy was performed. A retroperitoneal pregnant lesion was found and removed successfully. The diagnosis, treatment and mechanisms of REP are discussed. We believe REP should be considered in patients with elevated serum ß-hCG levels when the uterus and adnexa appear to be normal. Systemic administration of MTX in nonruptured REP before operation may prove to be helpful.


Assuntos
Gravidez Abdominal/diagnóstico , Gravidez Abdominal/terapia , Abortivos não Esteroides/uso terapêutico , Adulto , Coriocarcinoma/diagnóstico , Terapia Combinada , Erros de Diagnóstico , Feminino , Humanos , Laparotomia , Gravidez , Espaço Retroperitoneal , Neoplasias Uterinas/diagnóstico
15.
Nat Commun ; 15(1): 187, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168076

RESUMO

Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Compostos Orgânicos/análise , Solo/química , Carbono
16.
Proc Biol Sci ; 280(1771): 20131760, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24089333

RESUMO

Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks.


Assuntos
Biodiversidade , Biofilmes , Microbiota/genética , Rios/microbiologia , Microbiologia da Água , Análise de Variância , Áustria , Sequência de Bases , Primers do DNA/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
17.
Ecology ; 93(12): 2719-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23431601

RESUMO

Diversity-productivity relationships at the primary producer level have been extensively studied, especially for terrestrial systems. Here, we explore whether the diversity of aquatic primary producers (phytoplankton) has effects on higher trophic levels (zooplankton). We investigated the effect of phytoplankton diversity on an artificial zooplankton community in a laboratory experiment where phytoplankton biomass and elemental composition (carbon-to-phosphorus ratio) were kept constant. Phytoplankton diversity increased the means of both zooplankton growth rate and abundance while suppressing their variability, and sustained higher zooplankton diversity. Likely explanations include resource complementarity effects among phytoplankton species as food entities, as well as niche complementarity effects among Daphnia species as competitors. By affecting the productivity as well as the variability of the next trophic level, biodiversity of primary producers may have far-reaching consequences in aquatic food webs.


Assuntos
Biodiversidade , Cadeia Alimentar , Fitoplâncton , Zooplâncton , Animais , Carbono/química , Carbono/metabolismo , Daphnia/fisiologia , Água Doce , Modelos Biológicos , Fósforo/química , Fósforo/metabolismo
19.
Ecol Eng ; 42(100): 73-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23565037

RESUMO

Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems.

20.
Sci Total Environ ; 828: 154452, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278569

RESUMO

In many regions of the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences for terrestrial-aquatic ecosystem connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of energy supplying aquatic food webs along rivers: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. In Afromontane-savanna landscapes, the shifting numbers of large mammalian wildlife present a physical continuum whose ecological implications for rivers is not clearly understood. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the fractional contribution of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial organic matter and nutrients mediated by large mammalian herbivores (LMH), both wildlife and livestock, in its middle and lower reaches. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns in the fractional contribution of allochthonous organic matter from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous energy from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential energy sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The fractional contribution of different sources of energy for macroinvertebrates along the river did not follow predictions of the RCC and RPM. First, the fractional contribution of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, periphyton was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous sources of energy through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Animais Selvagens/metabolismo , Carbono/metabolismo , Ecossistema , Feminino , Cadeia Alimentar , Herbivoria , Humanos , Gado , Masculino , Mamíferos/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa