Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(3): 1087-1098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946544

RESUMO

PURPOSE: The clinical diagnosis and classification of Alexander disease (AxD) relies in part on qualitative neuroimaging biomarkers; however, these biomarkers fail to distinguish and discriminate different subtypes of AxD, especially in the presence of overlap in clinical symptoms. To address this gap in knowledge, we applied neurite orientation dispersion and density imaging (NODDI) to an innovative CRISPR-Cas9 rat genetic model of AxD to gain quantitative insights into the neural substrates and brain microstructural changes seen in AxD and to potentially identify novel quantitative NODDI biomarkers of AxD. METHODS: Multi-shell DWI of age- and sex-matched AxD and wild-type Sprague Dawley rats (n = 6 per sex per genotype) was performed and DTI and NODDI measures calculated. A 3 × 2 × 2 analysis of variance model was used to determine the effect of genotype, biological sex, and laterality on quantitative measures of DTI and NODDI across regions of interest implicated in AxD. RESULTS: There is a significant effect of genotype in the amygdala, hippocampus, neocortex, and thalamus in measures of both DTI and NODDI brain microstructure. A genotype by biological sex interaction was identified in DTI and NODDI measures in the corpus callosum, hippocampus, and neocortex. CONCLUSION: We present the first application of NODDI to the study of AxD using a rat genetic model of AxD. Our analysis identifies alterations in NODDI and DTI measures to large white matter tracts and subcortical gray nuclei. We further identified genotype by sex interactions, suggesting a possible role for biological sex in the neuropathogenesis of AxD.


Assuntos
Doença de Alexander , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Doença de Alexander/patologia , Ratos Sprague-Dawley , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/patologia , Biomarcadores , Imagem de Difusão por Ressonância Magnética
2.
FASEB J ; 37(7): e23018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310411

RESUMO

Early detection, accurate monitoring, and therapeutics are major problems in non-small-cell lung cancer (NSCLC) patients. We identified genomic copy number variation of a unique panel of 40 mitochondria-targeted genes in NSCLCs (GEOGSE #29365). Validation of mRNA expression of these molecules revealed an altered panel of 34 genes in lung adenocarcinomas (LUAD) and 36 genes in lung squamous cell carcinomas (LUSC). In the LUAD subtype (n = 533), we identified 29 upregulated and 5 downregulated genes, while in the LUSC subtype (n = 502), a panel of 30 upregulated and 6 downregulated genes were discovered. The majority of these genes are associated with mitochondrial protein transport, ferroptosis, calcium signaling, metabolism, OXPHOS function, TCA cycle, apoptosis, and MARylation. Altered mRNA expression of SLC25A4, ACSF2, MACROD1, and GCAT was associated with poor survival of the NSCLC patients. Progressive loss of SLC25A4 protein expression was confirmed in NSCLC tissues (n = 59), predicting poor survival of the patients. Forced overexpression of SLC25A4 in two LUAD cell lines inhibited their growth, viability, and migration. A significant association of the altered mitochondrial pathway genes with LC subtype-specific classical molecular signatures was observed, implicating the existence of nuclear-mitochondrial cross-talks. Key alteration signatures shared between LUAD and LUSC subtypes including SLC25A4, ACSF2, MACROD1, MDH2, LONP1, MTHFD2, and CA5A could be helpful in developing new biomarkers and therapeutics.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Sinalização do Cálcio , DNA Mitocondrial , RNA Mensageiro , Proteínas Mitocondriais/genética , Proteases Dependentes de ATP
3.
J Vasc Interv Radiol ; 35(6): 900-908.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508448

RESUMO

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.


Assuntos
Doxorrubicina , Camundongos Endogâmicos BALB C , Microambiente Tumoral , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Linhagem Celular Tumoral , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/cirurgia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias da Mama/patologia , Transdutores , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Polietilenoglicóis/química , Modelos Animais de Doenças , Antígenos Comuns de Leucócito
4.
J Cell Physiol ; 237(11): 4049-4078, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074903

RESUMO

Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.


Assuntos
Doenças Mitocondriais , Neoplasias , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fosforilação Oxidativa , Neoplasias/patologia , Apoptose
5.
Eur Radiol ; 32(6): 3683-3692, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35029734

RESUMO

Interactions between intestinal microbiota and the central nervous system profoundly influence brain structure and function. Over the past 15 years, intense research efforts have uncovered the significant association between gut microbial dysbiosis and neurologic, neurodegenerative, and psychiatric disorders; however, our understanding of the effect of gut microbiota on quantitative neuroimaging measures of brain microstructure and function remains limited. Many current gut microbiome studies specifically focus on discovering correlations between specific microbes and neurologic disease states that, while important, leave critical mechanistic questions unanswered. To address this significant gap in knowledge, quantitative structural and functional brain imaging has emerged as a vital bridge and as the next step in understanding how the gut microbiome influences the brain. In this review, we examine the current state-of-the-art, raise awareness of this important topic, and aim to highlight immense new opportunities-in both research and clinical imaging-for the imaging community in this emerging field of study. Our review also highlights the potential for preclinical imaging of germ-free and gnotobiotic models to significantly advance our understanding of the causal mechanisms by which the gut microbiome alters neural microstructure and function. KEY POINTS: • Alterations to the gut microbiome can significantly influence brain structure and function in health and disease. • Quantitative neuroimaging can help elucidate the effect of gut microbiota on the brain and with future translational advances, neuroimaging will be critical for both diagnostic assessment and therapeutic monitoring.


Assuntos
Microbioma Gastrointestinal , Encéfalo/diagnóstico por imagem , Disbiose/etiologia , Neuroimagem Funcional , Humanos , Neuroimagem
6.
Pharmacogenomics J ; 21(3): 308-317, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608662

RESUMO

INTRODUCTION: The prevalence of 2R/2R TYMS genotype is variable but estimated to be around 20-30% in Caucasians. The clinical relevance of TYMS 2R/2R genotype in predicting severe fluoropyrimidine-related adverse events (FrAE) is controversial. Here, we explored the prevalence and clinical relevance of 2R/2R TYMS genotype. METHODS: Between 2011 and 2018, 126 patients were genotyped for TYMS. FrAEs were graded according to CTCAE version 5.0. Fisher's exact test was used for statistical analysis. RESULTS: The prevalence of TYMS 2R/2R genotype was 24.6%. Among patients with TYMS genotypes (N = 71) that predict decreased TS expression, 2R/2R TYMS genotype was the most common TYMS genotype seen in female (57%) and African American (60%) patients. Among patients with genotypes that predict increased TS expression (N = 55), 12 patients had grade 3-4 FrAEs (22%), while among patients with genotypes that predict decreased TS expression (N = 71), 30 patients had grade 3-4 FrAEs (42%) (p = 0.0219). Compared to patients with genotypes predicting increased TS expression, 17 out of 31 patients (55%) with TYMS 2R/2R genotype had grade 3-4 FrAEs (p = 0.0039) and 15 out 40 patients (38%) with TYMS 2R/3RC and TYMS 3RC/3RC genotype had grade 3-4 FrAEs (p = 0.1108). CONCLUSION: The prevalence of TYMS 2R/2R genotype was 24.6%, and it had a unique sex and ethnic distribution. Polymorphism in the promoter region of TYMS gene that predicts decreased TS expression due to 2R/2R variant was associated with grade 3-4 FrAEs. These data suggest that genotyping patients who are not DPD deficient for TYMS might identify patients at risk of severe FrAEs.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Fluoruracila/efeitos adversos , Fluoruracila/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Timidilato Sintase/genética , Adulto , Negro ou Afro-Americano , Idoso , Idoso de 80 Anos ou mais , Etnicidade , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prevalência , Estudos Retrospectivos , Caracteres Sexuais , Adulto Jovem
7.
J Cell Biochem ; 121(1): 828-839, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407387

RESUMO

Pancreatic tumors are highly desmoplastic and poorly-vascularized, and therefore must develop adaptive mechanisms to sustain their survival under hypoxic condition. Extracellular vesicles (EV) play vital roles in pancreatic tumor pathobiology by facilitating intercellular communication. Here we studied the effect of hypoxia on the release of EVs and examined their role in adaptive survival of pancreatic cancer (PC) cells. Hypoxia promoted the release of EV in PC cell lines, MiaPaCa and AsPC1, wherein former exhibited a far greater induction. Moreover, a time-dependent, measurable and significant increase was recorded for small EV (SEV) in both the cell lines with only minimal induction observed for medium (MEV) and large EVs (LEV). Similarly, noticeable changes in size distribution of SEV were also recorded with a shift toward smaller average size under extreme hypoxia. Thrombospondin (apoptotic bodies marker) was exclusively detected on LEVs, while Arf6 (microvesicles marker) was mostly present on MEV with some expression in LEV as well. However, CD9 and CD63 (exosome markers) were expressed in both SEV and MEVs with a decreased expression recorded under hypoxia. Among all subfractions, SEV was the most bioactive in promoting the survival of hypoxic PC cells and hypoxia-inducible factor-1α stabilization was involved in heightened EV release under hypoxia and for their potency to promote hypoxic cell survival. Altogether, our findings provide a novel mechanism for the adaptive hypoxic survival of PC cells and should serve as the basis for future investigations on broader functional implications of EV.


Assuntos
Sobrevivência Celular , Vesículas Extracelulares/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Neoplasias Pancreáticas/patologia , Comunicação Celular , Proliferação de Células , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas
8.
Biochim Biophys Acta Rev Cancer ; 1868(1): 16-28, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28108348

RESUMO

Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.


Assuntos
Epigênese Genética/genética , Neoplasias/genética , Acetilação , Animais , Metilação de DNA/genética , Humanos , Proteoma/genética , Transcriptoma/genética
9.
Carcinogenesis ; 38(8): 757-765, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430867

RESUMO

Although increased awareness leading to early detection and prevention, as well as advancements in treatment strategies, have resulted in superior clinical outcomes, African American women with breast cancer continue to have greater mortality rates, compared to Caucasian American counterparts. Moreover, African American women are more likely to have breast cancer at a younger age and be diagnosed with aggressive tumor sub-types. Such racial disparities can be attributed to socioeconomic differences, but it is increasingly being recognized that these disparities may indeed be due to certain genetic and other non-genetic biological differences. Tumor microenvironment, which provides a favorable niche for the growth of tumor cells, is comprised of several types of stromal cells and the various proteins secreted as a consequence of bi-directional tumor-stromal cross-talk. Emerging evidence suggests inherent biological differences in the tumor microenvironment of breast cancer patients from different racial backgrounds. Tumor microenvironment components, affected by the genetic make-up of the tumor cells as well as other non-tumor-associated factors, may also render patients more susceptible to the development of aggressive tumors and faster progression of disease resulting in early onset, thus adversely affecting patients' survival. This review provides an overview of breast cancer racial disparity and discusses the existence of race-associated differential tumor microenvironment and its underlying genetic and non-genetic causal factors. A better understanding of these aspects would help further research on effective cancer management and improved approaches for reducing the racial disparities gaps in breast cancer patients.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Microambiente Tumoral/genética , Negro ou Afro-Americano/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Grupos Raciais/genética , Fatores de Risco , Fatores Socioeconômicos , População Branca/genética
10.
J Biol Chem ; 291(31): 16263-70, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27246849

RESUMO

Extensive desmoplasia is a prominent pathological characteristic of pancreatic cancer (PC) that not only impacts tumor development, but therapeutic outcome as well. Recently, we demonstrated a novel role of MYB, an oncogenic transcription factor, in PC growth and metastasis. Here we studied its effect on pancreatic tumor histopathology and associated molecular and biological mechanisms. Tumor-xenografts derived from orthotopic-inoculation of MYB-overexpressing PC cells exhibited far-greater desmoplasia in histological analyses compared with those derived from MYB-silenced PC cells. These findings were further confirmed by immunostaining of tumor-xenograft sections with collagen-I, fibronectin (major extracellular-matrix proteins), and α-SMA (well-characterized marker of myofibroblasts or activated pancreatic stellate cells (PSCs)). Likewise, MYB-overexpressing PC cells provided significantly greater growth benefit to PSCs in a co-culture system as compared with the MYB-silenced cells. Interrogation of deep-sequencing data from MYB-overexpressing versus -silenced PC cells identified Sonic-hedgehog (SHH) and Adrenomedullin (ADM) as two differentially-expressed genes among others, which encode for secretory ligands involved in tumor-stromal cross-talk. In-silico analyses predicted putative MYB-binding sites in SHH and ADM promoters, which was later confirmed by chromatin-immunoprecipitation. A cooperative role of SHH and ADM in growth promotion of PSCs was confirmed in co-culture by using their specific-inhibitors and exogenous recombinant-proteins. Importantly, while SHH acted exclusively in a paracrine fashion on PSCs and influenced the growth of PC cells only indirectly, ADM could directly impact the growth of both PC cells and PSCs. In summary, we identified MYB as novel regulator of pancreatic tumor desmoplasia, which is suggestive of its diverse roles in PC pathobiology.


Assuntos
Adrenomedulina/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/biossíntese , Proteínas Oncogênicas v-myb/metabolismo , Neoplasias Pancreáticas/metabolismo , Comunicação Parácrina , Elementos de Resposta , Transcrição Gênica , Regulação para Cima , Adrenomedulina/genética , Animais , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Proteínas Oncogênicas v-myb/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia
11.
Br J Cancer ; 116(5): 609-619, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28152544

RESUMO

BACKGROUND: Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells. METHODS: Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 3'-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay. RESULTS: Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. Sub-fractionation grouped EVs into distinct subtypes based on size distribution and marker profiles, and exosome (Gem-Exo) was the only sub-fraction that imparted chemoresistance. Gene expression analyses demonstrated upregulation of SOD2 and CAT (ROS-detoxifying genes), and downregulation of DCK (gemcitabine-metabolising gene) in Gem-Exo-treated cells. SOD/CAT upregulation resulted, at least in part, from exosome-mediated transfer of their transcripts and they suppressed basal and gemcitabine-induced ROS production, and partly promoted chemoresistance. DCK downregulation occurred through exosome-delivered miR-155 and either the functional suppression of miR-155 or restoration of DCK led to marked abrogation of Gem-Exo-mediated chemoresistance. CONCLUSIONS: Together, these findings establish a novel role of exosomes in mediating the acquired chemoresistance of PC.


Assuntos
Catalase/genética , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Superóxido Dismutase/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Difusão Dinâmica da Luz , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Gencitabina
12.
Carcinogenesis ; 37(11): 1052-1061, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609457

RESUMO

The poor clinical outcome of pancreatic cancer (PC) is largely attributed to its aggressive nature and refractoriness to currently available therapeutic modalities. We previously reported antitumor efficacy of honokiol (HNK), a phytochemical isolated from various parts of Magnolia plant, against PC cells in short-term in vitro growth assays. Here, we report that HNK reduces plating efficiency and anchorage-independent growth of PC cells and suppresses their migration and invasiveness. Furthermore, significant inhibition of pancreatic tumor growth by HNK is observed in orthotopic mouse model along with complete-blockage of distant metastases. Histological examination suggests reduced desmoplasia in tumors from HNK-treated mice, later confirmed by immunohistochemical analyses of myofibroblast and extracellular matrix marker proteins (α-SMA and collagen I, respectively). At the molecular level, HNK treatment leads to decreased expression of sonic hedgehog (SHH) and CXCR4, two established mediators of bidirectional tumor-stromal cross-talk, both in vitro and in vivo . We also show that the conditioned media (CM) from HNK-treated PC cells have little growth-inducing effect on pancreatic stellate cells (PSCs) that could be regained by the addition of exogenous recombinant SHH. Moreover, pretreatment of CM of vehicle-treated PC cells with SHH-neutralizing antibody abolishes their growth-inducing potential on PSCs. Likewise, HNK-treated PC cells respond poorly to CM from PSCs due to decreased CXCR4 expression. Lastly, we show that the transfection of PC cells with constitutively active IKKß mutant reverses the suppressive effect of HNK on nuclear factor-kappaB activation and partially restores CXCR4 and SHH expression. Taken together, these findings suggest that HNK interferes with tumor-stromal cross-talk via downregulation of CXCR4 and SHH and decreases pancreatic tumor growth and metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Comunicação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Lignanas/uso terapêutico , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Pulmonares/secundário , Camundongos , Neoplasias Pancreáticas/patologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Br J Cancer ; 113(12): 1694-703, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26657649

RESUMO

BACKGROUND: MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far. METHODS: Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden's chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice. RESULTS: MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis. CONCLUSIONS: MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.


Assuntos
Divisão Celular/genética , Genes myb , Metástase Neoplásica/genética , Neoplasias Pancreáticas/patologia , Animais , Ciclo Celular , Xenoenxertos , Humanos , Camundongos , Neoplasias Pancreáticas/genética
14.
Br J Cancer ; 113(4): 660-8, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26247574

RESUMO

BACKGROUND: Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored. METHODS: miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay. RESULTS: miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells. CONCLUSIONS: miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.


Assuntos
Apoptose/genética , Caspase 3/genética , Caspase 7/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Citocromos c/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases , Proteína X Associada a bcl-2/genética
15.
BMC Cancer ; 15: 636, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26373391

RESUMO

BACKGROUND: Ultraviolet (UV) radiation from sun, particularly its UVB component (290-320 nm), is considered the major etiological cause of skin cancer that impacts over 2 million lives in the United States alone. Recently, we reported that polydisperse colloidal suspension of silver nanoparticles (AgNPs) protected the human keratinocytes (HaCaT) against UVB-induced damage, thus indicating their potential for prevention of skin carcinogenesis. Here we sought out to investigate if size controlled the chemopreventive efficacy of AgNPs against UVB-induced DNA damage and apoptosis. METHODS: Percent cell viability was examined by WST-1 assay after treating the cells with various doses (1-10 µg/mL) of AgNPs of different sizes (10, 20, 40, 60 and 100 nm) for 12 and 24 h. For protection studies, cells were treated with AgNPs of different sizes at a uniform concentration of 1 µg/mL. After 3 h, cells were irradiated with UVB (40 mJ/cm(2)) and dot-blot analysis was performed to detect cyclobutane pyrimidine dimers (CPDs) as an indication of DNA damage. Apoptosis was analyzed by flow cytometry after staining the cells with 7-Amino-Actinomycin (7-AAD) and PE Annexin V. Immunoblot analysis was accomplished by processing the cells for protein extraction and Western blotting using specific antibodies against various proteins. RESULTS: The data show that the pretreatment of HaCaT cells with AgNPs in the size range of 10-40 nm were effective in protecting the skin cells from UVB radiation-induced DNA damage as validated by reduced amounts of CPDs, whereas no protection was observed with AgNPs of larger sizes (60 and 100 nm). Similarly, only smaller size AgNPs (10-40 nm) were effective in protecting the skin cells from UV radiation-induced apoptosis. At the molecular level, UVB -irradiation of HaCaT cells led to marked increase in expression of pro-apoptotic protein (Bax) and decrease in anti-apoptotic proteins (Bcl-2 and Bcl-xL), while it remained largely unaffected in skin cells pretreated with smaller size AgNPs (10-40 nm). CONCLUSIONS: Altogether, these findings suggest that size is a critical determinant of the UVB-protective efficacy of AgNPs in human keratinocytes.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Nanopartículas Metálicas , Substâncias Protetoras , Prata , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Tamanho da Partícula , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química
16.
Nanomedicine ; 11(5): 1265-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25804413

RESUMO

Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR: Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Nanopartículas Metálicas , Prata/farmacologia , Anticarcinógenos/química , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Humanos , Queratinócitos/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta
17.
J Biol Chem ; 288(29): 21197-21207, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740244

RESUMO

Recently, we have shown that CXCL12/CXCR4 signaling plays an important role in gemcitabine resistance of pancreatic cancer (PC) cells. Here, we explored the effect of gemcitabine on this resistance mechanism. Our data demonstrate that gemcitabine induces CXCR4 expression in two PC cell lines (MiaPaCa and Colo357) in a dose- and time-dependent manner. Gemcitabine-induced CXCR4 expression is dependent on reactive oxygen species (ROS) generation because it is abrogated by pretreatment of PC cells with the free radical scavenger N-acetyl-L-cysteine. CXCR4 up-regulation by gemcitabine correlates with time-dependent accumulation of NF-κB and HIF-1α in the nucleus. Enhanced binding of NF-κB and HIF-1α to the CXCR4 promoter is observed in gemcitabine-treated PC cells, whereas their silencing by RNA interference causes suppression of gemcitabine-induced CXCR4 expression. ROS induction upon gemcitabine treatment precedes the nuclear accumulation of NF-κB and HIF-1α, and suppression of ROS diminishes these effects. The effect of ROS on NF-κB and HIF-1α is mediated through activation of ERK1/2 and Akt, and their pharmacological inhibition also suppresses gemcitabine-induced CXCR4 up-regulation. Interestingly, our data demonstrate that nuclear accumulation of NF-κB results from phosphorylation-induced degradation of IκBα, whereas HIF-1α up-regulation is NF-κB-dependent. Lastly, our data demonstrate that gemcitabine-treated PC cells are more motile and exhibit significantly greater invasiveness against a CXCL12 gradient. Together, these findings reinforce the role of CXCL12/CXCR4 signaling in gemcitabine resistance and point toward an unintended and undesired effect of chemotherapy.


Assuntos
Desoxicitidina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/genética , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Desoxicitidina/efeitos adversos , Desoxicitidina/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/genética , Gencitabina
18.
Proc Natl Acad Sci U S A ; 108(4): 1217-21, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205899

RESUMO

The Japanese beetle (JB), Popillia japonica, exhibits rapid paralysis after consuming flower petals of zonal geranium, Pelargonium x hortorum. Activity-guided fractionations were conducted with polar flower petal extracts from P. x hortorum cv. Nittany Lion Red, which led to the isolation of a paralysis-inducing compound. High-resolution-MS and NMR ((1)H, (13)C, COSY, heteronuclear sequential quantum correlation, heteronuclear multiple bond correlation) analysis identified the paralytic compound as quisqualic acid (C(5)H(7)N(3)O(5)), a known but rare agonist of excitatory amino acid receptors. Optical rotation measurements and chiral HPLC analysis determined an L-configuration. Geranium-derived and synthetic L-quisqualic acid demonstrated the same positive paralytic dose-response. Isolation of a neurotoxic, excitatory amino acid from zonal geranium establishes the phytochemical basis for induced paralysis of the JB, which had remained uncharacterized since the phenomenon was first described in 1920.


Assuntos
Besouros/efeitos dos fármacos , Aminoácidos Excitatórios/toxicidade , Flores/química , Geranium/química , Ácido Quisquálico/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/toxicidade , Aminoácidos Excitatórios/química , Aminoácidos Excitatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ácido Quisquálico/química , Ácido Quisquálico/isolamento & purificação , Estereoisomerismo
19.
Cancers (Basel) ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201638

RESUMO

The tumor microenvironment (TME) is a critical determinant of tumor progression, metastasis, and therapeutic outcomes [...].

20.
Artigo em Inglês | MEDLINE | ID: mdl-38360790

RESUMO

The neurobiological mechanisms underpinning psychiatric disorders such as treatment-resistant major depression, post-traumatic stress disorder, and substance use disorders, remain unknown. Psychedelic compounds, such as psilocybin, lysergic acid diethylamide, and N,N-dimethyltryptamine, have emerged as potential therapies for these disorders because of their hypothesized ability to induce neuroplastic effects and alter functional networks in the brain. Yet, the mechanisms underpinning the neurobiological treatment response remain obscure. Quantitative neuroimaging is uniquely positioned to provide insight into the neurobiological mechanisms of these emerging therapies and quantify the patient treatment response. This review aims to synthesize our current state-of-the-art understanding of the functional changes occurring in the brain following psilocybin, lysergic acid diethylamide, or N,N-dimethyltryptamine administration in human participants with fMRI and PET. We further aim to disseminate our understanding of psychedelic compounds as they relate to neuroimaging with the goal of improved diagnostics and treatment of neuropsychiatric illness.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa