Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 66(12): 2425-2431, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36163396

RESUMO

Understanding the crop response to elevated carbon dioxide (e[CO2]) condition is important and has attracted considerable interest owing to the variability and crop-specific response. In mungbean, reports are available regarding the effect of e[CO2] on its growth, physiology and yield. However, no information are available on the germination and vigour status of seeds produced at e[CO2]. Therefore, in the present investigation, mungbean (Virat) was grown in the open top chamber during summer season of 2018 and 2019 to study the implications of e[CO2] (600 ppm) on quality of the harvested seeds (germination and vigour). The exposure of mungbean plant to e[CO2] had no major impact on seed quality as the percent viability (normal seedling + hard seeds) was not reduced. However, in one season (2018), the seed germination (normal seedling) was slightly reduced from 72 to 68%, attributed majorly to an increase in the hard seeds (from 13 to 19%), a predominant form of seed dormancy in mungbean. The changes in seed germination were apparent only in first year of the experiment. Accelerated ageing test (AAT) and storage studies revealed no differences in the vigour of seeds produced at ambient and e[CO2] environments. Also, the seeds from e[CO2] had low protein and sugar but recorded higher starch content than the seeds from ambient [CO2].


Assuntos
Fabaceae , Vigna , Dióxido de Carbono/metabolismo , Germinação/fisiologia , Fabaceae/metabolismo , Sementes/metabolismo , Plântula
2.
Funct Integr Genomics ; 21(2): 251-263, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33635500

RESUMO

Cytoplasmic male sterility (CMS) offers a unique system to understand cytoplasmic nuclear crosstalk, and is also employed for exploitation of hybrid vigor in various crops. Pigeonpea A4-CMS, a predominant source of male sterility, is being used for efficient hybrid seed production. The molecular mechanisms of CMS trait remain poorly studied in pigeonpea. We performed genome-wide transcriptome profiling of A4-CMS line ICPA 2043 and its isogenic maintainer ICPB 2043 at two different stages of floral bud development (stage S1 and stage S2). Consistent with the evidences from some other crops, we also observed significant difference in the expression levels of genes in the later stage, i.e., stage S2. Differential expression was observed for 143 and 55 genes within the two stages of ICPA 2043 and ICPB 2043, respectively. We obtained only 10 differentially expressed genes (DEGs) between the stage S1 of the two genotypes, whereas expression change was significant for 582 genes in the case of stage S2. The qRT-PCR assay of randomly selected six genes supported the differential expression of genes between ICPA 2043 and ICPB 2043. Further, GO and KEGG pathway mapping suggested a possible compromise in key bioprocesses during flower and pollen development. Besides providing novel insights into the functional genomics of CMS trait, our results were in strong agreement with the gene expression atlas of pigeonpea that implicated various candidate genes like sucrose-proton symporter 2 and an uncharacterized protein along with pectate lyase, pectinesterase inhibitors, L-ascorbate oxidase homolog, ATPase, ß-galactosidase, polygalacturonase, and aldose 1-epimerase for pollen development of pigeonpea. The dataset presented here provides a rich genomic resource to improve understanding of CMS trait and its deployment in heterosis breeding in pigeonpea.


Assuntos
Cajanus/genética , Genoma de Planta/genética , Infertilidade das Plantas/genética , Transcriptoma/genética , Hibridização Genômica Comparativa , Citoplasma/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Humanos , Melhoramento Vegetal
3.
Physiol Mol Biol Plants ; 24(6): 1245-1259, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425438

RESUMO

Pigeonpea productivity is greatly constrained by poor plant ideotype of existing Indian cultivars. Enhancing pigeonpea yield demands a renewed focus on restructuring the ideal plant type by using more efficient approaches like genomic tools. Therefore, the present study aims to identify and validate a set of QTLs/gene(s) presumably associated with various plant ideotype traits in pigeonpea. A total of 133 pigeonpea germplasms were evaluated along with four checks in the augmented design for various ideotype traits i.e. initiation of flowering (IF), days to 50% flowering (DFF), days to maturity (DM), plant height (PH), primary branches (PB), seeds per pod (SP) and pod length (PL). We observed significant genetic diversity in the germplasm lines for these traits. The genetic control of IF, DFF, DM and PH renders these traits suitable for detection of marker trait associations. By using residual maximum likelihood algorithm, we obtained appropriate variance-covariance structures for modeling heterogeneity, correlation of genetic effects and non-genetic residual effects. The estimates of genetic correlations indicated a strong association among earliness traits. The best linear unbiased prediction values were calculated for individual traits, and association analysis was performed in a panel of 95 diverse genotypes with 19 genic SSRs. Out of five QTL-flanking SSRs used here for validation, only ASSR295 could show significant association with FDR and Bonferroni corrections, and accounted for 15.4% IF, 14.2% DFF and 16.2% DM of phenotypic variance (PV). Remaining SSR markers (ASSR1486, ASSR206 and ASSR408) could not qualify false discovery rate (FDR) and Bonferroni criteria, hence declared as false positives. Additionally, we identified two highly significant SSR markers, ASSR8 and ASSR390 on LG 1 and LG 2, respectively. The SSR marker ASSR8 explained up to 22 and 11% PV for earliness traits and PB respectively, whereas ASSR390 controlled up to 17% PV for earliness traits. The validation and identification of new QTLs in pigeonpea across diverse genetic backgrounds brightens the prospects for marker-assisted selection to improve yield gains in pigeonpea.

4.
Physiol Mol Biol Plants ; 16(2): 123-34, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572962

RESUMO

A total of 24 pigeonpea (Cajanus cajan L. Millspaugh) cultivars representing different maturity groups were evaluated for genetic diversity analysis using 10 pigeonpea specific and 66 cross-genera microsatellite markers. Of the cross-genera microsatellite markers, only 12 showed amplification. A total of 45 alleles were amplified by the 22 markers. Nine markers showed 100 % polymorphism. Markers Lc 14, BMd 48 and CCB 9 amplified maximum number (5) of alleles each. One genotype specific unique band in Pusa 9 was generated by markers CCB 8. Maximum genetic diversity (74 %) was observed between cultivars MA 3 and CO 6, while the minimum diversity (12 %) was observed between NDA 1 and DA 11. The average diversity among the cultivars was estimated to be 45.6 %. SSR primers from pigeonpea were found to be more polymorphic (37 %) as compared to common bean and lentil markers. The arithmetic mean heterozygosity (Hav) and marker index (MI) were found to be 0.014 and 0.03, respectively, indicating the potential of common bean and lentil microsatellite markers for genetic mapping, diversity analysis and genotyping in Cajanus.

5.
3 Biotech ; 10(10): 434, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32999812

RESUMO

Seed traits present important breeding targets for enhancing grain yield and quality in various grain legume crops including pigeonpea. The present study reports significant genetic variation for six seed traits including seed length (SL), seed width (SW), seed thickness (ST), seed weight (SWT), electrical conductivity (EC) and water uptake (WU) among Cajanus cajan (L.) Millspaugh acc. ICPL 20340 and Cajanus scarabaeoides (L.) Thouars acc. ICP 15739 and an F2 population derived from this interspecific cross. Maximum phenotypic values recorded for the F2 population were higher than observed in the parent ICPL 20340 [F2 max vs ICPL 20340: SW (7.05 vs 5.38), ST (4.63 vs 4.51), EC (65.17 vs 9.72), WU (213.17 vs 109.5)], which suggested contribution of positive alleles from the wild parent, ICP 15739. Concurrently, to identify the QTL controlling these seed traits, we assayed two parents and 94 F2 individuals with 113 polymorphic simple sequence repeat (SSR) markers. In the F2 population, 98 of the 113 SSRs showed Mendelian segregation ratio 1:2:1, whereas significant deviations were observed for 15 SSRs with their χ 2 values ranging between 6.26 and 20.62. A partial genetic linkage map comprising 83 SSR loci was constructed. QTL analysis identified 15 marker-trait associations (MTAs) for seed traits on four linkage groups i.e. LG01, LG02, LG04 and LG05. Phenotypic variations (PVs) explained by these QTL ranged from 4.4 (WU) to 19.91% (EC). These genomic regions contributing significantly towards observed variability of seed traits would serve as potential candidates for future research that aims to improve seed traits in pigeonpea.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa