Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 14(3): e1007256, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522563

RESUMO

It was recently reported that the recBC mutants of Escherichia coli, deficient for DNA double-strand break (DSB) repair, have a decreased copy number of their terminus region. We previously showed that this deficit resulted from DNA loss after post-replicative breakage of one of the two sister-chromosome termini at cell division. A viable cell and a dead cell devoid of terminus region were thus produced and, intriguingly, the reaction was transmitted to the following generations. Using genome marker frequency profiling and observation by microscopy of specific DNA loci within the terminus, we reveal here the origin of this phenomenon. We observed that terminus DNA loss was reduced in a recA mutant by the double-strand DNA degradation activity of RecBCD. The terminus-less cell produced at the first cell division was less prone to divide than the one produced at the next generation. DNA loss was not heritable if the chromosome was linearized in the terminus and occurred at chromosome termini that were unable to segregate after replication. We propose that in a recB mutant replication fork breakage results in the persistence of a linear DNA tail attached to a circular chromosome. Segregation of the linear and circular parts of this "σ-replicating chromosome" causes terminus DNA breakage during cell division. One daughter cell inherits a truncated linear chromosome and is not viable. The other inherits a circular chromosome attached to a linear tail ending in the chromosome terminus. Replication extends this tail, while degradation of its extremity results in terminus DNA loss. Repeated generation and segregation of new σ-replicating chromosomes explains the heritability of post-replicative breakage. Our results allow us to determine that in E. coli at each generation, 18% of cells are subject to replication fork breakage at dispersed, potentially random, chromosomal locations.


Assuntos
Cromossomos Bacterianos , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Bacteriano/genética , DNA Circular/genética , Escherichia coli/genética , Divisão Celular , Reparo do DNA , Escherichia coli/citologia , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Mutação
2.
Mol Microbiol ; 112(4): 1339-1349, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400173

RESUMO

Bacteria undergoing nutrient starvation induce the ubiquitous stringent response, resulting in gross physiological changes that reprograms cell metabolism from fast to slow growth. The stringent response is mediated by the secondary messengers pppGpp and ppGpp collectively referred to as (p)ppGpp or 'alarmone'. In Escherichia coli, two paralogs, RelA and SpoT, synthesize (p)ppGpp. RelA is activated by amino acid starvation, whereas SpoT, which can also degrade (p)ppGpp, responds to fatty acid (FA), carbon and phosphate starvation. Here, we discover that FA starvation leads to rapid activation of RelA and reveal the underlying mechanism. We show that FA starvation leads to depletion of lysine that, in turn, leads to the accumulation of uncharged tRNALys and activation of RelA. SpoT was also activated by FA starvation but to a lower level and with a delayed kinetics. Next, we discovered that pyruvate, a precursor of lysine, is depleted by FA starvation. We also propose a mechanism that explains how FA starvation leads to pyruvate depletion. Together our results raise the possibility that RelA may be a major player under many starvation conditions previously thought to depend principally on SpoT. Interestingly, FA starvation provoked a ~100-fold increase in relA dependent ampicillin tolerance.


Assuntos
Proteínas de Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , GTP Pirofosfoquinase/metabolismo , Ácido Pirúvico/metabolismo , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , GTP Pirofosfoquinase/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Guanosina Tetrafosfato/metabolismo , Ligases/metabolismo , Lisina/metabolismo , Pirofosfatases/metabolismo , RNA de Transferência/metabolismo
3.
PLoS Genet ; 13(10): e1006895, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968392

RESUMO

Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant.


Assuntos
Cromossomos Bacterianos/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Exodesoxirribonuclease V/genética , Divisão Celular , Reparo do DNA , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Análise de Sequência de DNA
4.
PLoS Genet ; 12(6): e1006114, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280472

RESUMO

Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Potássio/metabolismo , Supressão Genética , DNA Polimerase III/genética , Replicação do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Duplicação Gênica , Genoma Bacteriano , Oligonucleotídeos/genética , Resposta SOS em Genética , Temperatura , beta-Galactosidase/metabolismo
5.
Mol Microbiol ; 104(6): 1008-1026, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342235

RESUMO

The Escherichia coli holD mutant is poorly viable because the stability of holoenzyme polymerase III (Pol III HE) on DNA is compromised. Consequently, the SOS response is induced and the SOS polymerases DinB and Pol II further hinder replication. Mutations that restore the holD mutant viability belong to two classes, those that stabilize Pol III on DNA and those that prevent the deleterious effects of DinB over-production. We identified a dnaX mutation and the inactivation of rfaP and sspA genes as belonging to the first class of holD mutant suppressors. dnaX encodes a Pol III clamp loader subunit that interacts with HolD. rfaP encodes a lipopolysaccharide kinase that acts in outer membrane biogenesis. Its inactivation improves the holD mutant growth in part by affecting potassium import, previously proposed to stabilize Pol III HE on DNA by increasing electrostatic interactions. sspA encodes a global transcriptional regulator and growth of the holD mutant in its absence suggests that SspA controls genes that affect protein-DNA interactions. The inactivation of rarA belongs to the second class of suppressor mutations. rarA inactivation has a weak effect but is additive with other suppressor mutations. Our results suggest that RarA facilitates DinB binding to abandoned forks.


Assuntos
DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Polimerase III/genética , DNA Polimerase beta/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Resposta SOS em Genética/genética , Supressão Genética
6.
Commun Biol ; 4(1): 434, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790389

RESUMO

Bacteria synthesize guanosine tetra- and penta phosphate (commonly referred to as (p)ppGpp) in response to environmental stresses. (p)ppGpp reprograms cell physiology and is essential for stress survival, virulence and antibiotic tolerance. Proteins of the RSH superfamily (RelA/SpoT Homologues) are ubiquitously distributed and hydrolyze or synthesize (p)ppGpp. Structural studies have suggested that the shift between hydrolysis and synthesis is governed by conformational antagonism between the two active sites in RSHs. RelA proteins of γ-proteobacteria exclusively synthesize (p)ppGpp and encode an inactive pseudo-hydrolase domain. Escherichia coli RelA synthesizes (p)ppGpp in response to amino acid starvation with cognate uncharged tRNA at the ribosomal A-site, however, mechanistic details to the regulation of the enzymatic activity remain elusive. Here, we show a role of the enzymatically inactive hydrolase domain in modulating the activity of the synthetase domain of RelA. Using mutagenesis screening and functional studies, we identify a loop region (residues 114-130) in the hydrolase domain, which controls the synthetase activity. We show that a synthetase-inactive loop mutant of RelA is not affected for tRNA binding, but binds the ribosome less efficiently than wild type RelA. Our data support the model that the hydrolase domain acts as a molecular switch to regulate the synthetase activity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , GTP Pirofosfoquinase/metabolismo , Guanosina Pentafosfato/biossíntese , Hidrolases/metabolismo , Ligases/metabolismo , Domínios Proteicos
7.
Front Microbiol ; 11: 582113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983079

RESUMO

The stringent response regulates bacterial growth rate and is important for cell survival under changing environmental conditions. The effect of the stringent response is pleiotropic, affecting almost all biological processes in the cell including transcriptional downregulation of genes involved in stable RNA synthesis, DNA replication, and metabolic pathways, as well as the upregulation of stress-related genes. In this Review, we discuss how the stringent response affects chromosome replication and DNA repair activities in bacteria. Importantly, we address how accumulation of (p)ppGpp during the stringent response shuts down chromosome replication using highly different strategies in the evolutionary distant Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Interestingly, (p)ppGpp-mediated replication inhibition occurs downstream of the origin in B. subtilis, whereas replication inhibition in E. coli takes place at the initiation level, suggesting that stringent cell cycle arrest acts at different phases of the replication cycle between E. coli and B. subtilis. Furthermore, we address the role of (p)ppGpp in facilitating DNA repair activities and cell survival during exposure to UV and other DNA damaging agents. In particular, (p)ppGpp seems to stimulate the efficiency of nucleotide excision repair (NER)-dependent repair of DNA lesions. Finally, we discuss whether (p)ppGpp-mediated cell survival during DNA damage is related to the ability of (p)ppGpp accumulation to inhibit chromosome replication.

8.
FEMS Microbiol Rev ; 44(3): 351-368, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286623

RESUMO

It is well established that DNA double-strand break (DSB) repair is required to underpin chromosomal DNA replication. Because DNA replication forks are prone to breakage, faithful DSB repair and correct replication fork restart are critically important. Cells, where the proteins required for DSB repair are absent or altered, display characteristic disturbances to genome replication. In this review, we analyze how bacterial DNA replication is perturbed in DSB repair mutant strains and explore the consequences of these perturbations for bacterial chromosome segregation and cell viability. Importantly, we look at how DNA replication and DSB repair processes are implicated in the striking recent observations of DNA amplification and DNA loss in the chromosome terminus of various mutant Escherichia coli strains. We also address the mutant conditions required for the remarkable ability to copy the entire E. coli genome, and to maintain cell viability, even in the absence of replication initiation from oriC, the unique origin of DNA replication in wild type cells. Furthermore, we discuss the models that have been proposed to explain these phenomena and assess how these models fit with the observed data, provide new insights and enhance our understanding of chromosomal replication and termination in bacteria.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Reparo do DNA/genética , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética
9.
Front Microbiol ; 10: 2053, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543875

RESUMO

Horizontal gene transfer through natural competence is an important driving force of bacterial evolution and antibiotic resistance development. In several Gram-negative pathogens natural competence is regulated by the concerted action of cAMP receptor protein (CRP) and the transcriptional co-regulator Sxy through a subset of CRP-binding sites (CRP-S sites) at genes encoding competence factors. Despite the wealth of knowledge on CRP's structure and function it is not known how CRP and Sxy act together to activate transcription. In order to get an insight into the regulatory mechanism by which these two proteins activate gene expression, we performed a series of mutational analyses on CRP and Sxy. We found that CRP contains a previously uncharacterized region necessary for Sxy dependent induction of CRP-S sites, here named "Sxy Interacting Region" (SIR) encompassing residues Q194 and L196. Lost promoter induction in SIR mutants could be restored in the presence of specific complementary Sxy mutants, presenting evidence for a direct interaction of CRP and Sxy proteins in transcriptional activation. Moreover, we identified constitutive mutants of Sxy causing higher levels of CRP-S site promoter activation than wild-type Sxy. Both suppressor and constitutive mutations are located within the same area of Sxy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa