Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 437(2): 114015, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561062

RESUMO

A major obstacle in improving survival in pediatric T-cell acute lymphoblastic leukemia is understanding how to predict and treat leukemia relapse in the CNS. Leukemia cells are capable of infiltrating and residing within the CNS, primarily the leptomeninges, where they interact with the microenvironment and remain sheltered from systemic treatment. These cells can survive in the CNS, by hijacking the microenvironment and disrupting normal functions, thus promoting malignant transformation. While the protective effects of the bone marrow niche have been widely studied, the mechanisms behind leukemia infiltration into the CNS and the role of the CNS niche in leukemia cell survival remain unknown. We identified a dysregulated gene expression profile in CNS infiltrated T-ALL and CNS relapse, promoting cell survival, chemoresistance, and disease progression. Furthermore, we discovered that interactions between leukemia cells and human meningeal cells induced epigenetic alterations, such as changes in histone modifications, including H3K36me3 levels. These findings are a step towards understanding the molecular mechanisms promoting leukemia cell survival in the CNS microenvironment. Our results highlight genetic and epigenetic alterations induced by interactions between leukemia cells and the CNS niche, which could potentially be utilized as biomarkers to predict CNS infiltration and CNS relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Sobrevivência Celular , Linfócitos T/metabolismo , Recidiva , Ciclo Celular , Microambiente Tumoral
2.
Adv Funct Mater ; 34(3)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707790

RESUMO

Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced. The reciprocal role of transforming growth factor-beta 1 (TGF-ß1) and its inhibitor as well as 3D matrix stiffness to achieve co-differentiation of MCT fibroblasts and myofibers from a human-induced pluripotent stem cell (hiPSC)-derived paraxial mesoderm is studied. To avoid myogenic inhibition, TGF-ß1 is conjugated on the gelatin-based hydrogel to control the fibroblasts' populations locally; the TGF-ß1 degrades after 2 weeks, resulting in increased MCT-specific extracellular matrix (ECM) production. The locations of myofibers and fibroblasts are precisely controlled by using photolithography and co-axial wet spinning techniques, which results in the formation of MCT-layered functional myofibers in 3D constructs. This advanced engineering strategy is envisioned as a possible method for obtaining biomimetic human muscle grafts for various biomedical applications.

3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33479167

RESUMO

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Assuntos
COVID-19/imunologia , Sistema Fagocitário Mononuclear/imunologia , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Índice de Gravidade de Doença , Suécia
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
5.
Aesthet Surg J ; 44(3): NP218-NP224, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37950895

RESUMO

Limited incision facelifts (LIFs) have gained popularity as an alternative to traditional facelift procedures. While surgical techniques vary, these approaches share a common goal: to rejuvenate the face while minimizing scar visibility. Previous studies also suggest that the reduced tissue dissection in LIFs can lead to decreased postoperative swelling, shorter recovery periods, and fewer complications. In this systematic review we delved into the literature on LIFs, shedding light on the various surgical approaches and their respective safety profiles. A systematic review was conducted by independent evaluators who followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A random-effects model was utilized to summarize complications data, and meta-regressions were conducted to analyze associations with operative variables. The analysis encompassed a total of 20 articles, comprising data from 4451 patients. The vast majority (84%) of these patients underwent either local wide-awake surgery or conscious sedation, while the remaining 16% underwent general anesthesia. Our analysis revealed an overall complication frequency of 3.2%, with hematoma being the most common complication (2%), followed by temporary nerve injury (0.2%), and skin necrosis or wounds (0.06%). Notably, hematomas rarely required operating room interventions. Use of drains or tissue sealants was associated with an 86% decrease in complications. Limited incision facelifts can be performed with a low complication rate, utilizing a variety of techniques. Utilization of tissue sealants and drains may limit hematoma formation, which is the most common complication.


Assuntos
Neoplasias Encefálicas , Ritidoplastia , Ferida Cirúrgica , Humanos , Ritidoplastia/efeitos adversos , Ritidoplastia/métodos , Vigília , Dissecação , Hematoma/epidemiologia , Hematoma/etiologia , Hematoma/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
6.
Genomics ; 113(5): 2965-2976, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214629

RESUMO

Exercise is believed to be beneficial for skeletal muscle functions across all ages. Regimented exercise is often prescribed as an effective treatment/prophylaxis for age-related loss of muscle mass and function, known as sarcopenia, and plays an important role in the maintenance of mobility and functional independence in the elderly. However, response to exercise declines with aging, resulting in limited gain of muscle strength and endurance. These changes likely reflect age-dependent alterations in transcriptional response underlying the muscular adaptation to exercise. The exact changes in gene expression accompanying exercise, however, are largely unknown, and elucidating them is of a great clinical interest for understanding and optimizing the exercise-based therapies for sarcopenia. In order to characterize the exercise-induced transcriptomic changes in aged muscle, a paired-end RNA sequencing was performed on rRNA-depleted total RNA extracted from the gastrocnemius muscles of 24 months-old mice after 8 weeks of regimented exercise (exercise group) or no formal exercise program (sedentary group). Differential gene expression analysis of aged skeletal muscle revealed upregulations in the group of genes involved in neurotransmission and neuroexcitation, as well as equally notable absence of anabolic gene upregulations in the exercise group. In particular, genes encoding the transporters and receptor components of glutaminergic transmission were significantly upregulated in exercised muscles, as exemplified by Gria 1, Gria 2 and Grin2c encoding glutamate receptor 1, 2 and 2C respectively, Grin1 and Grin2b encoding N-methyl-d-aspartate receptors (NMDARs), Nptx1 responsible for glutaminergic receptor clustering, and Slc1a2 and Slc17a7 regulating synaptic uptake of glutamate. These changes were accompanied by an increase in the post-synaptic density of NMDARs and acetylcholine receptors (AChRs), as well as their innervation at neuromuscular junctions (NMJs). These results suggest that neural responses predominate the adaptive response of aged skeletal muscle to exercise, and indicate a possibility that glutaminergic transmission at NMJs may be present and responsible for synaptic protection and neural remodeling accompanying the exercise-induced functional enhancement in aged skeletal muscle. In addition, the absence of upregulations in the anabolic pathways highlights them as the area of potential pharmacological targeting for optimizing exercise-led sarcopenia therapy.


Assuntos
Músculo Esquelético , Sarcopenia , Envelhecimento/genética , Animais , Expressão Gênica , Camundongos , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Sarcopenia/genética , Sarcopenia/patologia
7.
Am J Transplant ; 21(10): 3472-3480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34033210

RESUMO

There is limited experience with facial retransplantation (fRT). We report on the management of facial retransplantation in a facial vascularized composite allotransplant recipient following irreversible allograft loss 88 months after the first transplant. Chronic antibody-mediated rejection and recurrent cellular rejection resulted in a deteriorated first allograft and the patient underwent retransplantation. We summarize the events between the two transplantations, focusing on the final rejection episode. We describe the surgical technique of facial retransplantation, the immunological and psychosocial management, and the 6-month postoperative outcomes. Removal of the old allograft and inset of the new transplant were done in one operation. The donor and recipient were a good immunological match. The procedure was technically complex, requiring more proximal arterial anastomoses and an interposition vein graft. During the first and second transplantation, the facial nerve was coapted at the level of the branches. There was no hyperacute rejection in the immediate postoperative phase. Outcomes 6 months postoperatively are promising. We provide proof-of-concept that facial retransplantation is a viable option for patients who suffer irreversible facial vascularized composite allograft loss.


Assuntos
Aloenxertos Compostos , Rejeição de Enxerto , Feminino , Rejeição de Enxerto/etiologia , Humanos , Reoperação , Transplante Homólogo
8.
FASEB J ; 34(12): 16086-16104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33064329

RESUMO

The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.


Assuntos
Envelhecimento/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Transdução de Sinais/fisiologia
9.
Soft Matter ; 17(25): 6225-6237, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34109345

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Colágeno , Polissacarídeos Bacterianos , Viscosidade
10.
Wound Repair Regen ; 28(1): 61-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603580

RESUMO

Volumetric muscle loss (VML) is a segmental loss of skeletal muscle which commonly heals with fibrosis, minimal muscle regeneration, and loss of muscle strength. Treatment options for these wounds which promote functional recovery are currently lacking. This study was designed to investigate whether the collagen-GAG scaffold (CGS) promotes functional muscle recovery following VML. A total of 66 C57/Bl6 mice were used in a three-stage experiment. First, 24 animals were split into three groups which underwent sham injury or unilateral quadriceps VML injury with or without CGS implantation. Two weeks post-surgery, muscle was harvested for histological and gene expression analysis. In the second stage, 18 mice underwent bilateral quadriceps VML injury, followed by weekly functional testing using a treadmill. In the third stage, 24 mice underwent sham or bilateral quadriceps VML injury with or without CGS implantation, with tissue harvested six weeks post-surgery for histological and gene expression analysis. VML mice treated with CGS demonstrated increased remnant fiber hypertrophy versus both the VML with no CGS and uninjured groups. Both VML groups showed greater muscle fiber hypertrophy than non-injured muscle. This phenomenon was still evident in the longer-term experiment. The gene array indicated that the CGS promoted upregulation of factors involved in promoting wound healing and regeneration. In terms of functional improvement, the VML mice treated with CGS ran at higher maximum speeds than VML without CGS. A CGS was shown to enhance muscle hypertrophy in response to VML injury with a resultant improvement in functional performance. A gene array highlighted increased gene expression of multiple growth factors following CGS implantation. This suggests that implantation of a CGS could be a promising treatment for VML wounds.


Assuntos
Regeneração Tecidual Guiada , Músculo Quadríceps/fisiologia , Regeneração/genética , Alicerces Teciduais , Animais , Colágeno , Glicosaminoglicanos , Camundongos , Força Muscular/fisiologia , Tamanho do Órgão , Músculo Quadríceps/lesões , Músculo Quadríceps/patologia , Recuperação de Função Fisiológica , Regeneração/fisiologia , Transcriptoma
11.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722616

RESUMO

Infection is a common and serious complication of cancer treatment in children that often presents as febrile neutropenia (FN). Gene-expression profiling techniques can reveal transcriptional signatures that discriminate between viral, bacterial and asymptomatic infections in otherwise healthy children. Here, we examined whether gene-expression profiling was feasible in children with FN who were undergoing cancer treatment. The blood transcriptome of the children (n = 63) was investigated at time of FN diagnosed as viral, bacterial, co-infection or unknown etiology, respectively, and compared to control samples derived from 12 of the patients following the FN episode. RNA sequencing was successful in 43 (68%) of the FN episodes. Only two genes were significantly differentially expressed in the bacterial versus the control group. Significantly up-regulated genes in patients with the other three etiologies versus the control group were enriched with cellular processes related to proliferation and cellular stress response, with no clear enrichment with innate responses to pathogens. Among the significantly down-regulated genes, a few clustered into pathways connected to responses to infection. In the present study of children during cancer treatment, the blood transcriptome was not suitable for determining the etiology of FN because of too few circulating immune cells for reliable gene expression analysis.


Assuntos
Infecções Bacterianas , Neutropenia Febril , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias , Adolescente , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Criança , Pré-Escolar , Neutropenia Febril/genética , Neutropenia Febril/imunologia , Neutropenia Febril/microbiologia , Neutropenia Febril/patologia , Feminino , Humanos , Lactente , Masculino , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/patologia
13.
Biochem Biophys Res Commun ; 508(3): 838-843, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528731

RESUMO

Skeletal muscle regeneration following injury is a complex multi-stage process involving the recruitment of inflammatory cells, the activation of muscle resident fibroblasts, and the differentiation of activated myoblasts into myocytes. Dysregulation of these cellular processes is associated with ineffective myofiber repair and excessive deposition of extracellular matrix proteins leading to fibrosis. PI3K/Akt signaling is a critical integrator of intra- and intercellular signals connecting nutrient availability to cell survival and growth. Activation of the PI3K/Akt pathway in skeletal muscle leads to hypertrophic growth and a reversal of the changes in body composition associated with obesity and advanced age. Though the molecular mechanisms mediating these effects are incompletely understood, changes in paracrine signaling are thought to play a key role. Here, we utilized modified RNA to study the biological role of the transient translocation of Akt to the myonuclei of maturing myotubes. Using a conditioned medium model system, we show that ectopic myonuclear Akt suppresses fibrogenic paracrine signaling in response to oxidative stress, and that interventions that increase or restore myonuclear Akt may impair fibrosis.


Assuntos
Núcleo Celular/enzimologia , Músculo Esquelético/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Fibrose , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Transfecção
14.
Genome Res ; 25(6): 872-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25778913

RESUMO

Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.


Assuntos
Genoma Fúngico , Histonas/genética , Nucleossomos/genética , Schizosaccharomyces/genética , Imunoprecipitação da Cromatina , Replicação do DNA , Bases de Dados Genéticas , Estudos de Associação Genética , Histonas/metabolismo , Metilação , Análise em Microsséries , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/metabolismo
15.
J Surg Res ; 232: 137-145, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30463709

RESUMO

BACKGROUND: Ischemia-reperfusion injury remains the major limiting factor for limb replantation and transplantation. Static cold storage (SCS) on ice currently represents the standard mode of preservation but is limited to 6 h of duration. Ex vivo machine perfusion has evolved as a potential alternative to safely extend the duration of ex vivo preservation by providing continuous supply of oxygen and nutrients. This study aims to evaluate underlying molecular mechanisms of both preservation modalities. METHODS: We assessed molecular changes in amputated porcine forelimbs stored on ice at 4°C for 2 h (n = 2) and limbs perfused with Perfadex solution at 10°C for 2 h (n = 3) or 12 h (n = 3) before replantation. Muscle biopsies were examined for histological changes and gene expression levels using H&E staining and a hypoxia-related PCR gene array, respectively. RESULTS: Histology revealed only minor differences between the ice (SCS) and perfusion groups after 2 h of preservation, with decreased muscle fiber disruption in the perfusion groups compared with the ice (SCS) group. Perfused limbs demonstrated downregulation of genes coding for glycolytic pathways and glucose transporters after 2 h and 12 h when compared with SCS after 2 h. Similarly, genes that induce angiogenesis and those that are activated on DNA damage were downregulated in both perfusion groups as compared with SCS. CONCLUSIONS: Perfusion of porcine limbs resulted in less activation of hypoxia-related gene families when compared with SCS. This may indicate a state more closely resembling physiological conditions during perfusion and potentially limiting ischemic injury. Our study confirms ex vivo perfusion for up to 12 h as a viable alternative for preservation of vascularized composite tissues.


Assuntos
Extremidades/cirurgia , Hipóxia/metabolismo , Preservação de Órgãos , Reimplante , Animais , Temperatura Baixa , Dano ao DNA , Feminino , Glucose/metabolismo , Perfusão , Suínos , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética
16.
J Surg Res ; 227: 35-43, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804860

RESUMO

BACKGROUND: Skin grafting is the current standard of care in the treatment of full-thickness burns and other wounds. It is sometimes associated with substantial problems, such as poor quality of the healed skin, scarring, and lack of donor-site skin in large burns. To overcome these problems, alternative techniques that could provide larger expansion of a skin graft have been introduced over the years. Particularly, different cell therapies and methods to further expand skin grafts to minimize the need for donor skin have been attempted. The purpose of this study was to objectively evaluate the efficacy of cell and micrograft transplantation in the healing of full-thickness wounds. MATERIALS AND METHODS: Allogeneic cultured keratinocytes and fibroblasts, separately and together, as well as autologous and allogeneic skin micrografts were transplanted to full-thickness rat wounds, and healing was studied over time. In addition, wound fluid was collected, and the level of various cytokines and growth factors in the wound after transplantation was measured. RESULTS: Our results showed that both autologous and allogeneic micrografts were efficient treatment modalities for full-thickness wound healing. Allogeneic skin cell transplantation did not result in wound closure, and no viable cells were found in the wound 10 d after transplantation. CONCLUSIONS: Our study demonstrated that allogeneic micrografting is a possible treatment modality for full-thickness wound healing. The allografts stayed viable in the wound and contributed to both re-epithelialization and formation of dermis, whereas allogeneic skin cell transplantation did not result in wound closure.


Assuntos
Queimaduras/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Pele/métodos , Cicatrização , Animais , Células Cultivadas , Cicatriz/etiologia , Modelos Animais de Doenças , Feminino , Fibroblastos/transplante , Humanos , Queratinócitos/transplante , Cultura Primária de Células , Ratos , Ratos Wistar , Reepitelização/fisiologia , Pele/citologia , Fenômenos Fisiológicos da Pele , Transplante de Pele/efeitos adversos , Transplante Autólogo/métodos , Resultado do Tratamento
17.
Inorg Chem ; 57(8): 4205-4221, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29578701

RESUMO

The scholastic significance of supramolecular chemistry continues to grow with the recent development of catalytic transformations in confined space of supramolecular architectures. It has come a long way from a natural cavity containing molecules to modern smart materials capable of manipulating reaction pathways. The rise of self-assembled coordination complexes provided a diverse array of host structures. Starting from purely organic compounds to metalloligand surrogates, supramolecular host cavities were tuned according to the requirement of the reactions. The understanding of their participation in a reaction led to better usage of those assemblies for specific reaction sequences. Commencing from cyclodextrin, a wide range of organic molecules was used for cage-catalyzed organic transformations. However, difficulties in synthesis and a tedious purification procedure led chemists to choose a different pathway of metal-ligand coordination-driven self-assembly. The latter stood out as a potential replacement of the organic cages, overcoming the previous drawbacks. In the glut of different transition-metal assemblies used for catalytic transformations, many of them showed chemo- and stereoselective products. However, the small cavity size in some of them led to premature failure of the reaction. In that context, "molecular barrels" showed good efficacy for the catalytic reaction sequence. The large cavity size and bigger orifice for intake of the substrate and easy release of the product made them a better choice for catalysis. Additionally these are mostly used in aqueous media, which reinforces the idea of green and environmentally nonhazardous chemistry. In this Viewpoint, we discuss the use of metal-ligand coordination-driven self-assembled molecular containers used for catalysis with special emphasis on molecular barrels. This paper built on existing literature provides a thorough development of the fertile ground of the coordination architecture for catalysis and its future direction of propagation.

18.
J Wound Care ; 27(Sup7): S12-S18, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008255

RESUMO

OBJECTIVE: Split-thickness skin graft (STSG) donor site dressings can play an integral role in reducing donor site morbidity. This study tested a novel, chitosan-based wound dressing, Opticell Ag, as an STSG donor site dressing for wounds <10% total body surface area (TBSA). METHOD: Between January and December 2016, the chitosan-based dressing was placed on participating patients' donor sites immediately following graft harvest and covered with a transparent occlusive dressing. Pain was evaluated on postoperative day one, before dressing change between days 5-7, and before and after dressing removal between days 10-14 using the Visual Analog Scale (VAS). The extent of re-epithelialisation was determined between day 10-14 and at one month, and healing quality was also evaluated at one month post-operatively using the Vancouver Scar Scale (VSS). RESULTS: A total of 19 patients were recruited, of which 16 completed the study. Patients experienced mild-to-moderate pain in their donor sites when the chitosan-based dressing was used. Pain decreased significantly between postoperative day one and days 10-14, as well as between days 5-7 and 10-14. The mean percentage of re-epithelialisation on days 10-14 was 92% and by one month was 99%. The mean VSS at one month was 3.2±1.4. There were no statistically significant differences between patients' re-epithelialisation rates or VSS scores. There were unplanned dressing changes in four patients. No donor site infections or other adverse events were identified. CONCLUSION: The chitosan-based dressing tested in this study is safe, effective, and associated with reasonable pain control and acceptable healing quality. The results suggest that it is a promising STSG donor site dressing.


Assuntos
Quitosana/uso terapêutico , Curativos Oclusivos , Transplante de Pele/métodos , Infecção da Ferida Cirúrgica/prevenção & controle , Sítio Doador de Transplante/fisiopatologia , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Cuidados Pós-Operatórios/métodos , Prognóstico , Reepitelização/efeitos dos fármacos , Reepitelização/fisiologia , Transplante de Pele/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Cicatrização/efeitos dos fármacos
19.
J Biol Chem ; 291(10): 5068-79, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26792858

RESUMO

Triple-negative breast cancer (TNBC) represents a highly aggressive form of breast cancer with limited treatment options. Proinflammatory cytokines such as TNFα can facilitate tumor progression and metastasis. However, the mechanistic aspects of inflammation mediated TNBC progression remain unclear. Using ChIP-seq, we demonstrate that the cistrome for the AP-1 transcription factor c-Jun is comprised of 13,800 binding regions in TNFα-stimulated TNBC cells. In addition, we show that c-Jun regulates nearly a third of the TNFα-regulated transcriptome. Interestingly, high expression level of the c-Jun-regulated pro-invasion gene program is associated with poor clinical outcome in TNBCs. We further demonstrate that c-Jun drives TNFα-mediated increase of malignant characteristics of TNBC cells by transcriptional regulation of Ninj1. As exemplified by the CXC chemokine genes clustered on chromosome 4, we demonstrate that NF-κB might be a pioneer factor required for the regulation of TNFα-inducible inflammatory genes, whereas c-Jun has little effect. Together, our results uncover AP-1 as an important determinant for inflammation-induced cancer progression, rather than inflammatory response.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 4/genética , Feminino , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Fator de Transcrição AP-1/genética , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/genética
20.
J Biol Chem ; 291(29): 15169-84, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27231350

RESUMO

Endurance and resistance exercise training induces specific and profound changes in the skeletal muscle transcriptome. Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) coactivators are not only among the genes differentially induced by distinct training methods, but they also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. Although endurance training preferentially induces PGC-1α1 expression, resistance exercise activates the expression of PGC-1α2, -α3, and -α4. These three alternative PGC-1α isoforms lack the arginine/serine-rich (RS) and RNA recognition motifs characteristic of PGC-1α1. Discrete functions for PGC-1α1 and -α4 have been described, but the biological role of PGC-1α2 and -α3 remains elusive. Here we show that different PGC-1α variants can affect target gene splicing through diverse mechanisms, including alternative promoter usage. By analyzing the exon structure of the target transcripts for each PGC-1α isoform, we were able to identify a large number of previously unknown PGC-1α2 and -α3 target genes and pathways in skeletal muscle. In particular, PGC-1α2 seems to mediate a decrease in the levels of cholesterol synthesis genes. Our results suggest that the conservation of the N-terminal activation and repression domains (and not the RS/RNA recognition motif) is what determines the gene programs and splicing options modulated by each PGC-1α isoform. By using skeletal muscle-specific transgenic mice for PGC-1α1 and -α4, we could validate, in vivo, splicing events observed in in vitro studies. These results show that alternative PGC-1α variants can affect target gene expression both quantitatively and qualitatively and identify novel biological pathways under the control of this system of coactivators.


Assuntos
Processamento Alternativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Células Cultivadas , Sequência Conservada , Éxons , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa