Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(5): 750-754, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245476

RESUMO

Malaria is estimated by the World Health Organization (WHO) to have killed 627,000 individuals worldwide in 2020, with nearly 80% of deaths in African children younger than five. The recent WHO approval of the RTS,S/AS01 vaccine, which targets Plasmodium falciparum pre-erythrocytic stages, provides hope that its use combined with other interventions can help reverse the current malaria resurgence.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum
2.
Trends Immunol ; 44(4): 256-265, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964020

RESUMO

Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.


Assuntos
Anopheles , Malária , Humanos , Animais , Feminino , Anopheles/parasitologia , Anopheles/fisiologia , Saliva , Mosquitos Vetores/parasitologia , Esporozoítos
3.
Proc Natl Acad Sci U S A ; 120(2): e2210181120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595704

RESUMO

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Humanos , Hepatócitos/metabolismo , Fígado , Malária/parasitologia , Caspases/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
J Biol Chem ; : 107557, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002668

RESUMO

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of P. falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI-anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for a highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.

5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653959

RESUMO

Despite the critical role of Plasmodium sporozoites in malaria transmission, we still know little about the mechanisms underlying their development in mosquitoes. Here, we use single-cell RNA sequencing to characterize the gene expression profiles of 16,038 Plasmodium berghei sporozoites isolated throughout their development from midgut oocysts to salivary glands, and from forced salivation experiments. Our results reveal a succession of tightly regulated changes in gene expression occurring during the maturation of sporozoites and highlight candidate genes that could play important roles in oocyst egress, sporozoite motility, and the mechanisms underlying the invasion of mosquito salivary glands and mammalian hepatocytes. In addition, the single-cell data reveal extensive transcriptional heterogeneity among parasites isolated from the same anatomical site, suggesting that Plasmodium development in mosquitoes is asynchronous and regulated by intrinsic as well as environmental factors. Finally, our analyses show a decrease in transcriptional activity preceding the translational repression observed in mature sporozoites and associated with their quiescent state in salivary glands, followed by a rapid reactivation of the transcriptional machinery immediately upon salivation.


Assuntos
Anopheles/parasitologia , Regulação da Expressão Gênica , Plasmodium berghei/metabolismo , Glândulas Salivares/parasitologia , Esporozoítos/metabolismo , Transcrição Gênica , Animais , Camundongos
6.
Antimicrob Agents Chemother ; 66(9): e0041822, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943271

RESUMO

As the malaria parasite becomes resistant to every drug that we develop, the identification and development of novel drug candidates are essential. Many studies have screened compounds designed to target the clinically important blood stages. However, if we are to shrink the malaria map, new drugs that block the transmission of the parasite are needed. Sporozoites are the infective stage of the malaria parasite, transmitted to the mammalian host as mosquitoes probe for blood. Sporozoite motility is critical to their ability to exit the inoculation site and establish infection, and drug-like compounds targeting motility are effective at blocking infection in the rodent malaria model. In this study, we established a moderate-throughput motility assay for sporozoites of the human malaria parasite Plasmodium falciparum, enabling us to screen the 400 drug-like compounds from the pathogen box provided by the Medicines for Malaria Venture for their activity. Compounds exhibiting inhibitory effects on P. falciparum sporozoite motility were further assessed for transmission-blocking activity and asexual-stage growth. Five compounds had a significant inhibitory effect on P. falciparum sporozoite motility in the nanomolar range. Using membrane feeding assays, we demonstrate that four of these compounds had inhibitory activity against the transmission of P. falciparum to the mosquito. Interestingly, of the four compounds with inhibitory activity against both transmission stages, three are known kinase inhibitors. Together with a previous study that found that several of these compounds could inhibit asexual blood-stage parasite growth, our findings provide new antimalarial drug candidates that have multistage activity.


Assuntos
Anopheles , Antimaláricos , Malária Falciparum , Malária , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mamíferos , Plasmodium falciparum , Esporozoítos
7.
PLoS Pathog ; 16(5): e1008181, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453765

RESUMO

Plasmodium sporozoites are the infective stage of the malaria parasite. Though this is a bottleneck for the parasite, the quantitative dynamics of transmission, from mosquito inoculation of sporozoites to patent blood-stage infection in the mammalian host, are poorly understood. Here we utilize a rodent model to determine the probability of malaria infection after infectious mosquito bite, and consider the impact of mosquito parasite load, blood-meal acquisition, probe-time, and probe location, on infection probability. We found that infection likelihood correlates with mosquito sporozoite load and, to a lesser degree, the duration of probing, and is not dependent upon the mosquito's ability to find blood. The relationship between sporozoite load and infection probability is non-linear and can be described by a set of models that include a threshold, with mosquitoes harboring over 10,000 salivary gland sporozoites being significantly more likely to initiate a malaria infection. Overall, our data suggest that the small subset of highly infected mosquitoes may contribute disproportionally to malaria transmission in the field and that quantifying mosquito sporozoite loads could aid in predicting the force of infection in different transmission settings.


Assuntos
Malária/transmissão , Esporozoítos/metabolismo , Animais , Anopheles/metabolismo , Anopheles/parasitologia , Comportamento Alimentar , Feminino , Malária/parasitologia , Camundongos , Mosquitos Vetores/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidade , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidade , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
8.
Proc Natl Acad Sci U S A ; 116(8): 3183-3192, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30723152

RESUMO

The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.


Assuntos
Genoma de Protozoário/genética , Heterocromatina/genética , Malária Falciparum/genética , Plasmodium falciparum/genética , Animais , Centrômero/genética , Regulação da Expressão Gênica/genética , Genômica , Humanos , Malária Falciparum/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Telômero/genética , Toxoplasma/genética , Toxoplasma/patogenicidade
9.
Proc Natl Acad Sci U S A ; 115(11): E2604-E2613, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483266

RESUMO

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.


Assuntos
Biotina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Fígado/parasitologia , Malária/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Apicoplastos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Proteínas de Protozoários/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(17): 4477-4482, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632205

RESUMO

Malaria-causing Plasmodium sporozoites are deposited in the dermis by the bite of an infected mosquito and move by gliding motility to the liver where they invade and develop within host hepatocytes. Although extracellular interactions between Plasmodium sporozoite ligands and host receptors provide important guidance cues for productive infection and are good vaccine targets, these interactions remain largely uncharacterized. Thrombospondin-related anonymous protein (TRAP) is a parasite cell surface ligand that is essential for both gliding motility and invasion because it couples the extracellular binding of host receptors to the parasite cytoplasmic actinomyosin motor; however, the molecular nature of the host TRAP receptors is poorly defined. Here, we use a systematic extracellular protein interaction screening approach to identify the integrin αvß3 as a directly interacting host receptor for Plasmodium falciparum TRAP. Biochemical characterization of the interaction suggests a two-site binding model, requiring contributions from both the von Willebrand factor A domain and the RGD motif of TRAP for integrin binding. We show that TRAP binding to cells is promoted in the presence of integrin-activating proadhesive Mn2+ ions, and that cells genetically targeted so that they lack cell surface expression of the integrin αv-subunit are no longer able to bind TRAP. P. falciparum sporozoites moved with greater speed in the dermis of Itgb3-deficient mice, suggesting that the interaction has a role in sporozoite migration. The identification of the integrin αvß3 as the host receptor for TRAP provides an important demonstration of a sporozoite surface ligand that directly interacts with host receptors.


Assuntos
Integrina alfaVbeta3/metabolismo , Modelos Biológicos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Células HEK293 , Humanos , Integrina alfaVbeta3/genética , Camundongos , Camundongos Knockout , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Esporozoítos/genética
11.
Genome Res ; 27(1): 133-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003436

RESUMO

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.


Assuntos
Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Transcriptoma/genética , Animais , Anopheles/genética , Éxons/genética , Perfilação da Expressão Gênica , Proteoma/genética , Proteômica
12.
J Proteome Res ; 18(9): 3404-3418, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31335145

RESUMO

The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.


Assuntos
Fígado/parasitologia , Malária/diagnóstico , Plasmodium berghei/isolamento & purificação , Proteômica , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/genética , Malária/sangue , Malária/genética , Malária/parasitologia , Merozoítos/isolamento & purificação , Merozoítos/patogenicidade , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade
13.
PLoS Pathog ; 13(9): e1006586, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922424

RESUMO

Proteases have been implicated in a variety of developmental processes during the malaria parasite lifecycle. In particular, invasion and egress of the parasite from the infected hepatocyte and erythrocyte, critically depend on protease activity. Although falcipain-1 was the first cysteine protease to be characterized in P. falciparum, its role in the lifecycle of the parasite has been the subject of some controversy. While an inhibitor of falcipain-1 blocked erythrocyte invasion by merozoites, two independent studies showed that falcipain-1 disruption did not affect growth of blood stage parasites. To shed light on the role of this protease over the entire Plasmodium lifecycle, we disrupted berghepain-1, its ortholog in the rodent parasite P. berghei. We found that this mutant parasite displays a pronounced delay in blood stage infection after inoculation of sporozoites. Experiments designed to pinpoint the defect of berghepain-1 knockout parasites found that it was not due to alterations in gliding motility, hepatocyte invasion or liver stage development and that injection of berghepain-1 knockout merosomes replicated the phenotype of delayed blood stage growth after sporozoite inoculation. We identified an additional role for berghepain-1 in preparing blood stage merozoites for infection of erythrocytes and observed that berghepain-1 knockout parasites exhibit a reticulocyte restriction, suggesting that berghepain-1 activity broadens the erythrocyte repertoire of the parasite. The lack of berghepain-1 expression resulted in a greater reduction in erythrocyte infectivity in hepatocyte-derived merozoites than it did in erythrocyte-derived merozoites. These observations indicate a role for berghepain-1 in processing ligands important for merozoite infectivity and provide evidence supporting the notion that hepatic and erythrocytic merozoites, though structurally similar, are not identical.


Assuntos
Cisteína Endopeptidases/metabolismo , Hepatócitos/metabolismo , Malária/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Animais , Inibidores de Cisteína Proteinase/farmacologia , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Fígado/metabolismo , Malária/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo
14.
Malar J ; 18(1): 78, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866956

RESUMO

BACKGROUND: The Plasmodium falciparum histidine-rich protein II (PfHRP2) is a common biomarker used in malaria rapid diagnostic tests (RDTs), but can persist in the blood for up to 40 days following curative treatment. The persistence of PfHRP2 presents a false positive limitation to diagnostic interpretation. However, the in vivo dynamics and compartmentalization underlying PfHRP2 persistence have not been fully characterized in the plasma and erythrocyte (RBC) fraction of the whole blood. METHODS: The kinetics and persistence of PfHRP2 in the plasma and RBC fractions of the whole blood were investigated post-treatment in human clinical samples and samples isolated from BALB/c mice infected with a novel transgenic Plasmodium berghei parasite engineered to express PfHRP2 (PbPfHRP2). RESULTS: PfHRP2 levels in human RBCs were consistently 20-40 times greater than plasma levels, even post-parasite clearance. PfHRP2 positive, DNA negative, once-infected RBCs were identified in patients that comprised 0.1-1% of total RBCs for 6 and 12 days post-treatment, even post-atovaquone-proguanil regimens. Transgenic PbPfHRP2 parasites in BALB/c mice produced and exported tgPfHRP2 to the RBC cytosol similar to P. falciparum. As in humans, tgPfHRP2 levels were found to be approximately 20-fold higher within the RBC fraction than the plasma post-treatment. RBC localized tgPfHRP2 persisted longer than tgPfHRP2 in the plasma after curative treatment. tgPfHRP2 positive, but DNA negative once-infected RBCs were also detected in mouse peripheral blood for 7-9 days after curative treatment. CONCLUSIONS: The data suggest that persistence of PfHRP2 is due to slower clearance of protein from the RBC fraction of the whole blood. This appears to be a result of the presence PfHRP2 in previously infected, pitted cells, as opposed to PfHRP2 binding naïve RBCs in circulation post-treatment. The results thus confirm that the extended duration of RDT positivity after parasite clearance is likely due to pitted, once-infected RBCs that remain positive for PfHRP2.


Assuntos
Antígenos de Protozoários/sangue , Antimaláricos/administração & dosagem , Eritrócitos/química , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Plasma/química , Proteínas de Protozoários/sangue , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Tempo
15.
PLoS Pathog ; 12(4): e1005606, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128092

RESUMO

Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens.


Assuntos
Malária Falciparum/metabolismo , Proteômica/métodos , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Culicidae , Imunofluorescência , Glicosilação , Espectrometria de Massas , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Organismos Geneticamente Modificados , Esporozoítos/química
16.
J Microsc ; 269(1): 78-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28795398

RESUMO

The ability to monitor micropipette injections with a high-resolution fluorescent microscope has utility for a variety of applications. Herein, different approaches were tested for creating broad-band fluorescently labelled glass micropipettes including: UV cured glass glues, baked glass enamel containing fluorescent dyes as well as nanodiamonds attached during pipette formation in the microforge. The most robust and simplest approach was to use labelled baked enamel on the exterior of the pipette. This approach was tested using pipettes designed to mimic a mosquito proboscis for the injection of the malaria parasite, Plasmodium spp., into the dermis of a living mouse ear. The pipette (∼30 micron diameter) was easily detected in the microscopy field of view and tolerated multiple insertions through the skin. This simple inexpensive approach to fluorescently labelling micropipettes will aid in the development of procedures under the fluorescent microscope.


Assuntos
Culicidae/parasitologia , Malária/transmissão , Microscopia de Fluorescência/métodos , Plasmodium/citologia , Coloração e Rotulagem/métodos , Animais , Culicidae/fisiologia , Camundongos , Modelos Teóricos
17.
PLoS Pathog ; 11(2): e1004637, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658939

RESUMO

Malaria infection begins when a female Anopheles mosquito injects Plasmodium sporozoites into the skin of its host during blood feeding. Skin-deposited sporozoites may enter the bloodstream and infect the liver, reside and develop in the skin, or migrate to the draining lymph nodes (DLNs). Importantly, the DLN is where protective CD8(+) T cell responses against malaria liver stages are induced after a dermal route of infection. However, the significance of parasites in the skin and DLN to CD8(+) T cell activation is largely unknown. In this study, we used genetically modified parasites, as well as antibody-mediated immobilization of sporozoites, to determine that active sporozoite migration to the DLNs is required for robust CD8(+) T cell responses. Through dynamic in vivo and static imaging, we show the direct uptake of parasites by lymph-node resident DCs followed by CD8(+) T cell-DC cluster formation, a surrogate for antigen presentation, in the DLNs. A few hours after sporozoite arrival to the DLNs, CD8(+) T cells are primed by resident CD8α(+) DCs with no apparent role for skin-derived DCs. Together, these results establish a critical role for lymph node resident CD8α(+) DCs in CD8(+) T cell priming to sporozoite antigens while emphasizing a requirement for motile sporozoites in the induction of CD8(+) T cell-mediated immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Esporozoítos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Antígenos de Protozoários/imunologia , Separação Celular , Células Dendríticas/imunologia , Citometria de Fluxo , Imunidade Celular/imunologia , Linfonodos/parasitologia , Camundongos , Microscopia Confocal , Plasmodium berghei/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Cell Microbiol ; 18(11): 1625-1641, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27084458

RESUMO

As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post-translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co-localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non-infectious to mice. Importantly, genetic complementation of the DHHC3-ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.


Assuntos
Aciltransferases/fisiologia , Anopheles/parasitologia , Fígado/parasitologia , Plasmodium berghei/enzimologia , Proteínas de Protozoários/fisiologia , Animais , Células Hep G2 , Interações Hospedeiro-Parasita , Humanos , Lipoilação , Camundongos , Oocistos/enzimologia , Oocistos/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Processamento de Proteína Pós-Traducional , Glândulas Salivares/parasitologia , Esporozoítos/enzimologia , Esporozoítos/crescimento & desenvolvimento
19.
Malar J ; 16(1): 110, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279180

RESUMO

BACKGROUND: Primaquine is an anti-malarial used to prevent Plasmodium vivax relapses and malaria transmission. However, PQ metabolites cause haemolysis in patients deficient in the enzyme glucose-6-phosphate dehydrogenase (G6PD). Fifteen PQ-thiazolidinone derivatives, synthesized through one-post reactions from primaquine, arenealdehydes and mercaptoacetic acid, were evaluated in parallel in several biological assays, including ability to block malaria transmission to mosquitoes. RESULTS: All primaquine derivatives (PQ-TZs) exhibited lower cell toxicity than primaquine; none caused haemolysis to normal or G6PD-deficient human erythrocytes in vitro. Sera from mice pretreated with the test compounds thus assumed to have drug metabolites, caused no in vitro haemolysis of human erythrocytes, whereas sera from mice pretreated with primaquine did cause haemolysis. The ability of the PQ-TZs to block malaria transmission was evaluated based on the oocyst production and percentage of mosquitoes infected after a blood meal in drug pre-treated animals with experimental malaria caused by either Plasmodium gallinaceum or Plasmodium berghei; four and five PQ-TZs significantly inhibited sporogony in avian and in rodent malaria, respectively. Selected PQ-TZs were tested for their inhibitory activity on P. berghei liver stage development, in mice and in vitro, one compound (4m) caused a 3-day delay in the malaria pre-patent period. CONCLUSIONS: The compound 4m was the most promising, blocking malaria transmissions and reducing the number of exoerythrocytic forms of P. berghei (EEFs) in hepatoma cells in vitro and in mice in vivo. The same compound also caused a 3-day delay in the malaria pre-patent period.


Assuntos
Eritrócitos/parasitologia , Glucosefosfato Desidrogenase/metabolismo , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium gallinaceum/efeitos dos fármacos , Primaquina/análogos & derivados , Primaquina/farmacologia , Animais , Linhagem Celular Tumoral , Galinhas , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Malária/transmissão , Malária Aviária/tratamento farmacológico , Malária Aviária/transmissão , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium gallinaceum/crescimento & desenvolvimento
20.
PLoS Pathog ; 10(8): e1004336, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166051

RESUMO

Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.


Assuntos
Inibidores de Cisteína Proteinase/metabolismo , Malária/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Animais , Eritrócitos/parasitologia , Imunofluorescência , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida , Malária/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa