Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 298(3): 101695, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143839

RESUMO

Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5ß1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1ß, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5ß1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1ß, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5ß1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5ß1 as a promising target for treating vascular inflammation in COVID-19.


Assuntos
COVID-19 , Inflamação , Integrina alfa5beta1 , NF-kappa B , Glicoproteína da Espícula de Coronavírus , Fator de Necrose Tumoral alfa , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Integrina alfa5beta1/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Oligopeptídeos , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Angiogenesis ; 25(1): 57-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34097181

RESUMO

The hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.


Assuntos
Proteínas de Ciclo Celular , Retinopatia Diabética , Inibidores da Angiogênese/farmacologia , Animais , Camundongos , Oligopeptídeos/farmacologia , Prolactina
3.
Eye (Lond) ; 38(3): 520-528, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673971

RESUMO

BACKGROUND/OBJECTIVE: The prokinetic levosulpiride elevates vasoinhibin levels in the vitreous of patients with proliferative diabetic retinopathy (PDR) suggesting clinical benefits due to the anti-vasopermeability and anti-angiogenic properties of vasoinhibin. We investigated the biological activity of levosulpiride in centre-involving diabetic macular oedema (DME). PATIENTS/METHODS: Prospective, randomized, double-blinded, dual-centre, phase 2 trial in patients with centre-involving DME orally treated with placebo (n = 17) or levosulpiride (n = 17) for 8 weeks or in patients with PDR undergoing elective pars plana vitrectomy and receiving placebo (n = 18) or levosulpiride (n = 18) orally for the 1 week before vitrectomy. RESULTS: Levosulpiride improved changes from baseline in best-corrected visual acuity (p ≤ 0.037), central foveal thickness (CFT, p ≤ 0.013), and mean macular volume (MMV, p ≤ 0.002) at weeks 4, 6, and 8 compared to placebo. At 8 weeks, the proportion of eyes gaining ≥5 ETDRS letters at 4 m (41% vs. 28%), losing ≥21 µm in CFT (55% vs. 28%), and dropping ≥0.06 mm3 in MMV (65% vs. 29%) was higher after levosulpiride than placebo. The overall grading of visual and structural parameters improved with levosulpiride (p = 0.029). Levosulpiride reduced VEGF (p = 0.025) and PlGF (p = 0.008) levels in the vitreous of PDR patients. No significant adverse side-effects were detected. CONCLUSIONS: Oral levosulpiride for 8 weeks improved visual and structural outcomes in patients with centre-involving DME by mechanisms that may include intraocular upregulation of vasoinhibin and downregulation of VEGF and PlGF. Larger clinical trials evaluating long-term efficacy and safety are warranted.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Sulpirida/análogos & derivados , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/cirurgia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Estudos Prospectivos , Injeções Intravítreas , Inibidores da Angiogênese
4.
J Neuroendocrinol ; 34(4): e13091, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35078262

RESUMO

Excessive vasopermeability and angiogenesis compromise vision in diabetic macular oedema (DME) and diabetic retinopathy (DR). Vasoinhibin is a fragment of the hormone prolactin (PRL) that inhibits diabetes-induced retinal hypervasopermeability and ischaemia-induced retinal angiogenesis in rodents. Hyperprolactinaemia generated by the dopamine D2 receptor antagonist, levosulpiride, is associated with higher levels of vasoinhibin in the vitreous of patients with DR, implying a beneficial outcome due to vasoinhibin-mediated inhibition of retinal vascular alterations. Here, we tested whether hyperprolactinaemia induced by racemic sulpiride increases intraocular vasoinhibin levels and inhibits retinal hypervasopermeability in diabetic rats. Diabetes was generated with streptozotocin and, 4 weeks later, rats were treated for 2 weeks with sulpiride or osmotic minipumps delivering PRL. ELISA, Western blot, and Evans blue assay were used to evaluate serum PRL, retinal vasoinhibin, and retinal vasopermeability, respectively. Hyperprolactinaemia in response to sulpiride or exogenous PRL was associated with increased levels of vasoinhibin in the retina and reduced retinal hypervasopermeability. Furthermore, sulpiride decreased retinal haemorrhages in response to the intravitreal administration of vascular endothelial growth factor (VEGF). Neither sulpiride nor exogenous PRL modified blood glucose levels or bodyweight. We conclude that sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular conversion of endogenous PRL to vasoinhibin. These findings support the therapeutic potential of sulpiride and its levorotatory enantiomer, levosulpiride, against DME and DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Hiperprolactinemia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Humanos , Hiperprolactinemia/induzido quimicamente , Hiperprolactinemia/complicações , Hiperprolactinemia/metabolismo , Prolactina/metabolismo , Ratos , Retina/metabolismo , Sulpirida/metabolismo , Sulpirida/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
MethodsX ; 8: 101325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430234

RESUMO

Neural stem/progenitor cells (NSPC) are multipotent cells that renew themselves and could differentiate into neurons and macro glia (astrocytes and oligodendrocytes) of the nervous system during embryonic development. Duchenne muscular dystrophy is a severe type of muscular dystrophy caused by mutations in the dmd gene, and one-third of patients cursed with neuro-cognitive impairments. In this data article, we take advantage of the differentiation capacity of NSPC as a model to increase our knowledge in the neuronal and/or astrocytic differentiation and to evaluate the expression of dystrophins and dystrophin-associated proteins. We showed the characterization of undifferentiated and neuron and/or astrocyte differentiated NSPC. In addition, we evaluated the expression and subcellular localization of dystrophins and ß-dystroglycan in undifferentiated NSPC and differentiated to neurons and astrocytes.•Primary culture of NSPC was characterized by the expression of multipotent markers nestin and Sox2.•Neuronal or astrocytic differentiation of NSPC was performed by basic fibroblast growth factor (FGF2) withdrawal, histamine or ciliary neurotrophic factor (CNTF) treatment, and expression of ßIII-tubulin or glial fibrillary acidic protein (GFAP) as differentiation markers for neurons or astrocytes was evaluated.•This study will contribute to the understanding of dystrophins and dystrophin-associated proteins expression and function during neuronal or astrocytic differentiation of NSPC.

6.
Neurosci Lett ; 736: 135247, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32668267

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the dystrophin gene. Dystrophin is required for the organization of a complex consisting of dystroglycans, sarcoglycans, dystrobrevins and syntrophins, known as the dystrophin-associated proteins complex (DAPC). In addition to muscle degeneration, cognitive impairment has been reported in DMD patients. To characterize a suitable model for studying the embryonic cerebral functions of dystrophin, we analyzed the expression patterns of dystrophins/DAPC in undifferentiated and differentiated embryonic neural stem/progenitor cells (NSPC). We found that NSPC express mRNAs for dystrophins Dp427, Dp140, Dp71 and Dp40; ß-dystroglycan; α- and ß-dystrobrevin; α1-, ß1-, ß2- and γ2-syntrophin; and ß-, γ-, δ- and ε-sarcoglycan. Some of these were differentially regulated during neuronal or astrocytic differentiation. Interestingly, the protein expression levels of Dp140, ß-dystroglycan and α2-dystrobrevin were also differentially regulated. Additionally, we found that proliferating NSPC and differentiated neurons and astrocytes show immuno-positive staining for dystrophins and ß-dystroglycan. Our results show that dystrophins and DAPC components are expressed and regulated during the neuronal or astrocytic differentiation of NSPC, suggesting that these proteins may have different roles in the brain development.


Assuntos
Astrócitos/metabolismo , Proteínas Associadas à Distrofina/biossíntese , Distrofina/biossíntese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/fisiologia , Distrofia Muscular de Duchenne/metabolismo , Ratos
7.
J Neuroendocrinol ; 32(11): e12858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449569

RESUMO

The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.


Assuntos
Hiperóxia , Neovascularização Fisiológica , Prolactina , Vasos Retinianos , Animais , Feminino , Masculino , Camundongos , Gravidez , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hiperóxia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Prolactina/sangue , Prolactina/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Retinopatia da Prematuridade/patologia
8.
J Proteomics ; 191: 80-87, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29625189

RESUMO

The Dp71 protein is the most abundant dystrophin in the central nervous system (CNS). Several dystrophin Dp71 isoforms have been described and are classified into three groups, each with a different C-terminal end. However, the functions of Dp71 isoforms remain unknown. In the present study, we analysed the effect of Dp71eΔ71 overexpression on neuronal differentiation of PC12 Tet-On cells. Overexpression of dystrophin Dp71eΔ71 stimulates neuronal differentiation, increasing the percentage of cells with neurites and neurite length. According to 2-DE analysis, Dp71eΔ71 overexpression modified the protein expression profile of rat pheochromocytoma PC12 Tet-On cells that had been treated with neuronal growth factor (NGF) for nine days. Interestingly, all differentially expressed proteins were up-regulated compared to the control. The proteomic analysis showed that Dp71eΔ71 increases the expression of proteins with important roles in the differentiation process, such as HspB1, S100A6, and K8 proteins involved in the cytoskeletal structure and HCNP protein involved in neurotransmitter synthesis. The expression of neuronal marker TH was also up-regulated. Mass spectrometry data are available via ProteomeXchange with identifier PXD009114. SIGNIFICANCE: This study is the first to explore the role of the specific isoform Dp71eΔ71. The results obtained here support the hypothesis that the dystrophin Dp71eΔ71 isoform has an important role in the neurite outgrowth by regulating the levels of proteins involved in the cytoskeletal structure, such as HspB1, S100A6, and K8, and in neurotransmitter synthesis, such as HCNP and TH, biological processes required to stimulate neuronal differentiation.


Assuntos
Diferenciação Celular , Distrofina/fisiologia , Crescimento Neuronal , Neurônios/citologia , Animais , Proteínas do Citoesqueleto/metabolismo , Distrofina/farmacologia , Neurotransmissores/biossíntese , Células PC12 , Isoformas de Proteínas , Proteômica/métodos , Ratos
9.
Acta Histochem ; 121(2): 218-226, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30595391

RESUMO

Dystrophins (Dps) are the sub-membranous proteins that work via the dystrophin-associated proteins complex, which comprises ß-dystroglycan (ß-DG), a cell surface receptor for extracellular matrix. Recently, we have revealed ß-DG decrease and central function impairment of supraoptic nucleus (SON) in Dp71 deficient adult mice, opening the question on the profiles of Dps and ß-DG during SON development. At birth and the age of 10, 20 and 60 days, we examined the expression by RT-PCR and Western-blotting, and the distribution by immunohistochemistry of Dps and ß-DG. Also, we analyzed, by immunohistochemistry and Western-blotting, the neuropeptide, arginine vasopressin (AVP), in the SON at the different ages. At birth, Dp71 and to a lesser extends, Dp140 and Dp427, and also ß-DG are revealed in the SON. They are localized in the magnocellular neurons (MCNs), astrocytes and vessels. From birth to adulthood, the AVP raise in the SON coincides with the progressive increase of Dp71 level while the level of Dp140 and Dp427 increased only at D20, D10 post-natal development, respectively, and ß-DG expression did not change. Moreover, the location of Dps or/and ß-DG in the cell compartments was modified during development: at D10, Dps appeared in the astrocytes end-feet surrounding MCNs, and at D20, Dps and ß-DG codistributed in the astrocytes end-feet, surrounding MCNs and vessels. Such a distribution marks the first steps of post-natal SON development and may be considered essential in the establishment of structural plasticity mechanisms in SON, where astrocyte end-feet, vessels, magnocellular neurons, are physiologically associated. The disappearance of ß-DG in the MCNs nucleus marks the adulthood SON and suggests that the complex of Dps associating ß-DG is required for the nucleoskeleton function in the post-natal development.


Assuntos
Arginina Vasopressina/metabolismo , Distroglicanas/metabolismo , Distrofina/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Imuno-Histoquímica/métodos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar
10.
Invest Ophthalmol Vis Sci ; 58(2): 876-886, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159978

RESUMO

Purpose: Breakdown of the inner blood-retinal barrier (iBRB) occurs in many retinal disorders and may cause retinal edema often responsible for vision loss. Dexamethasone is used in clinical practice to restore iBRB. The aim of this study was to characterize the impact of a surgically induced iBRB breakdown on retinal homeostatic changes due to dystrophin Dp71, aquaporin-4 (AQP4), and Kir4.1 alterations in Müller glial cells (MGC) in a mouse model. The protective effect of dexamethasone was assessed in this model. Moreover, retinal explants were used to control MGC exposure to a hypoosmotic solution containing barium. Methods: Partial lens surgery was performed in C57BL6/J mice. Dystrophin Dp71, AQP4, and Kir4.1 expression was analyzed by quantitative RT-PCR, Western blot, and immunohistochemistry. Twenty-four hours after surgery, mice received a single intravitreal injection of dexamethasone or of vehicle. Results: After partial lens surgery, iBRB permeability increased while Dp71 and AQP4 were downregulated and Kir4.1 was delocalized. These effects were partially prevented by dexamethasone injection. In the retinal explant model, MGC were swollen and Dp71, AQP4, and Kir4.1 were downregulated after exposure to a hypoosmotic solution containing barium, but not in the presence of dexamethasone. Heat shock factor protein 1 (HSF1) was overexpressed in dexamethasone-treated retinas. Conclusions: Partial lens surgery induces iBRB breakdown and molecular changes in MGC, including a downregulation of Dp71 and AQP4 and the delocalization of Kir4.1. Dexamethasone seems to protect retina from these molecular changes by upregulating HSF1.


Assuntos
Anti-Inflamatórios/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Dexametasona/farmacologia , Células Ependimogliais/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Animais , Aquaporina 4/metabolismo , Barreira Hematorretiniana/metabolismo , Western Blotting , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Distrofina/metabolismo , Células Ependimogliais/metabolismo , Fatores de Transcrição de Choque Térmico , Imuno-Histoquímica , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Fatores de Transcrição/metabolismo
11.
J Mol Neurosci ; 58(2): 201-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26411569

RESUMO

Several dystrophin Dp71 messenger RNA (mRNA) alternative splice variants have been described. According to the splicing of exon 78 or intron 77, Dp71 proteins are grouped as Dp71d, Dp71f, and Dp71e, and each group has a specific C-terminal end. In this study, we explored the expression of Dp71 isoforms at the complementary DNA (cDNA) level and the subcellular localization of recombinant Myc-Dp71 proteins in PC12 cells. We determined that PC12 cells express Dp71a, Dp71c, Dp71ab, Dp71e, and Dp71ec mRNA splice variants. In undifferentiated and nerve growth factor-differentiated PC12 Tet-ON cells, Dp71a, Dp71ab, and Dp71e were found to localize and colocalize with ß-dystroglycan and α1-syntrophin in the periphery/cytoplasm, while Dp71c and Dp71ec were mainly localized in the cell periphery and showed less colocalization with ß-dystroglycan and α1-syntrophin. The levels of Dp71a, Dp71e, and Dp71ec were increased in the nucleus of differentiated PC12 Tet-ON cells compared to undifferentiated cells. Dp71 isoforms were also localized in neurite extensions and growth cones.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Distroglicanas/genética , Distrofina/genética , Distrofina/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Células PC12 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa