Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 161(5): 988-997, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000479

RESUMO

In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroundings, and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms.


Assuntos
Escherichia coli/fisiologia , Pseudomonas aeruginosa/fisiologia , Aderência Bacteriana , Biofilmes , Transporte Biológico , Fenômenos Biomecânicos , Escherichia coli/citologia , Locomoção , Pseudomonas aeruginosa/citologia
2.
Trends Immunol ; 42(6): 464-468, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33994111

RESUMO

Aging is associated with decreased antigen-specific immunity and increased chronic inflammation. While DNA-sensing pathways might be involved, the molecular factors underlying these age-related aberrancies in immune signaling are unclear. Here, we consider the potential role of aging-induced hypomethylated DNA as a putative stimulant of age-associated inflammation.


Assuntos
Envelhecimento , Transdução de Sinais , DNA , Humanos , Inflamação
3.
Cell ; 133(6): 1043-54, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555780

RESUMO

Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Engenharia de Proteínas , Transdução de Sinais , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caulobacter crescentus/enzimologia , Caulobacter crescentus/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Genes Reguladores , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Mutagênese , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Transativadores/química , Transativadores/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37427092

RESUMO

Swarming is a collective bacterial behavior in which a dense population of bacterial cells moves over a porous surface, resulting in the expansion of the population. This collective behavior can guide bacteria away from potential stressors such as antibiotics and bacterial viruses. However, the mechanisms responsible for the organization of swarms are not understood. Here, we briefly review models that are based on bacterial sensing and fluid mechanics that are proposed to guide swarming in the pathogenic bacterium Pseudomonas aeruginosa. To provide further insight into the role of fluid mechanics in P. aeruginosa swarms, we track the movement of tendrils and the flow of surfactant using a novel technique that we have developed, Imaging of Reflected Illuminated Structures (IRIS). Our measurements show that tendrils and surfactants form distinct layers that grow in lockstep with each other. The results raise new questions about existing swarming models and the possibility that the flow of surfactants impacts tendril development. These findings emphasize that swarm organization involves an interplay between biological processes and fluid mechanics.

5.
Phys Biol ; 18(5)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462162

RESUMO

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Assuntos
Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes , Percepção de Quorum/fisiologia , Biofilmes/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 115(21): 5438-5443, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735692

RESUMO

Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Hidrodinâmica , Pseudomonas aeruginosa/fisiologia , Movimentos da Água
7.
Adv Exp Med Biol ; 1267: 117-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894480

RESUMO

Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/imunologia , Bactérias/imunologia , Histonas/química , Histonas/imunologia , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Histonas/farmacologia , Imunidade Inata
8.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31451543

RESUMO

We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Assuntos
Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Antibacterianos/farmacologia , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/genética , Flagelos/efeitos dos fármacos , Flagelos/genética , Viabilidade Microbiana/efeitos dos fármacos , Movimento/fisiologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Quinolonas/farmacologia , Transdução de Sinais , Estresse Fisiológico
9.
Proc Natl Acad Sci U S A ; 111(47): 16860-5, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385640

RESUMO

Pseudomonas aeruginosa infects every type of host that has been examined by deploying multiple virulence factors. Previous studies of virulence regulation have largely focused on chemical cues, but P. aeruginosa may also respond to mechanical cues. Using a rapid imaging-based virulence assay, we demonstrate that P. aeruginosa activates virulence in response to attachment to a range of chemically distinct surfaces, suggesting that this bacterial species responds to mechanical properties of its substrates. Surface-activated virulence requires quorum sensing, but activating quorum sensing does not induce virulence without surface attachment. The activation of virulence by surfaces also requires the surface-exposed protein PilY1, which has a domain homologous to a eukaryotic mechanosensor. Specific mutation of the putative PilY1 mechanosensory domain is sufficient to induce virulence in non-surface-attached cells, suggesting that PilY1 mediates surface mechanotransduction. Triggering virulence only when cells are both at high density and attached to a surface­two host-nonspecific cues­explains how P. aeruginosa precisely regulates virulence while maintaining broad host specificity.


Assuntos
Aderência Bacteriana , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Virulência
10.
Proc Natl Acad Sci U S A ; 110(44): 17981-6, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24143808

RESUMO

Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/fisiologia , Transativadores/antagonistas & inibidores , Animais , Caenorhabditis elegans , Linhagem Celular , Escherichia coli , Humanos , Lactonas/química , Lactonas/farmacologia , Análise em Microsséries , Estrutura Molecular , Pseudomonas aeruginosa/fisiologia , Piocianina , Percepção de Quorum/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Compostos de Enxofre/química , Compostos de Enxofre/farmacologia , Virulência
11.
Mol Microbiol ; 90(5): 923-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24102920

RESUMO

Each Pseudomonas aeruginosa cell localizes two types of motility structures, a single flagellum and one or two clusters of type IV pili, to the cell poles. Previous studies suggested that these motility structures arrive at the pole through distinct mechanisms. Here we performed a swimming motility screen to identify polar flagellum localization factors and discovered three genes homologous to the TonB/ExbB/ExbD complex that have defects in both flagella-mediated swimming and pilus-mediated twitching motility. We found that deletion of tonB3, PA2983 or PA2982 led to non-polar localization of the flagellum and FlhF, which was thought to sit at the top of the flagellar localization hierarchy. Surprisingly, these mutants also exhibited pronounced changes in pilus formation or localization, indicating that these proteins may co-ordinate both the pilus and flagellum motility systems. Thus, we have renamed PA2983 and PA2982, pocA and pocB, respectively, for polar organelle co-ordinator to reflect this function. Our results suggest that TonB3, PocA and PocB may form a membrane-associated complex, which we term the Poc complex. These proteins do not exhibit polar localization themselves, but are required for increased expression of pilus genes upon surface association, indicating that they regulate motility structures through either localization or transcriptional mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/fisiologia , Flagelos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Proteínas Monoméricas de Ligação ao GTP/genética , Movimento , Pseudomonas aeruginosa/genética , Deleção de Sequência
12.
Mol Microbiol ; 85(1): 21-38, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22624875

RESUMO

Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; ß'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.


Assuntos
RNA Polimerases Dirigidas por DNA/análise , Proteínas de Escherichia coli/análise , Escherichia coli/enzimologia , Ribossomos/química , DNA Bacteriano/análise , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
13.
Biophys Rev (Melville) ; 4(3): 031305, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781002

RESUMO

Swarming is a collective flagella-dependent movement of bacteria across a surface that is observed across many species of bacteria. Due to the prevalence and diversity of this motility modality, multiple models of swarming have been proposed, but a consensus on a general mechanism for swarming is still lacking. Here, we focus on swarming by Pseudomonas aeruginosa due to the abundance of experimental data and multiple models for this species, including interpretations that are rooted in biology and biophysics. In this review, we address three outstanding questions about P. aeruginosa swarming: what drives the outward expansion of a swarm, what causes the formation of dendritic patterns (tendrils), and what are the roles of flagella? We review models that propose biologically active mechanisms including surfactant sensing as well as fluid mechanics-based models that consider swarms as thin liquid films. Finally, we reconcile recent observations of P. aeruginosa swarms with early definitions of swarming. This analysis suggests that mechanisms associated with sliding motility have a critical role in P. aeruginosa swarm formation.

14.
Front Cell Infect Microbiol ; 13: 1245874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780859

RESUMO

The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Pseudomonas aeruginosa , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , Biofilmes , Tensoativos
15.
Biophys J ; 103(1): 146-51, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828341

RESUMO

Bacteria inhabit a wide variety of environments in which fluid flow is present, including healthcare and food processing settings and the vasculature of animals and plants. The motility of bacteria on surfaces in the presence of flow has not been well characterized. Here we focus on Pseudomonas aeruginosa, an opportunistic human pathogen that thrives in flow conditions such as in catheters and respiratory tracts. We investigate the effects of flow on P. aeruginosa cells and describe a mechanism in which surface shear stress orients surface-attached P. aeruginosa cells along the flow direction, causing cells to migrate against the flow direction while pivoting in a zig-zag motion. This upstream movement is due to the retraction of type IV pili by the ATPase motors PilT and PilU and results from the effects of flow on the polar localization of type IV pili. This directed upstream motility could be beneficial in environments where flow is present, allowing bacteria to colonize environments that cannot be reached by other surface-attached bacteria.


Assuntos
Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/química , Deleção de Genes , Técnicas Analíticas Microfluídicas , Movimento
16.
Mol Syst Biol ; 6: 452, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21179024

RESUMO

We have evolved a robust two-component signal transduction pathway from a sensor kinase (SK) and non-partner response regulator (RR) that show weak cross-talk in vitro and no detectable cross-talk in vivo in wild-type strains. The SK, CpxA, is bifunctional, with both kinase and phosphatase activities for its partner RR. We show that by combining a small number of mutations in CpxA that individually increase phosphorylation of the non-partner RR OmpR, phosphatase activity against phospho-OmpR emerges. The resulting circuit also becomes responsive to input signal to CpxA. The effects of combining these mutations in CpxA appear to reflect complex intragenic interactions between multiple sites in the protein. However, by analyzing a simple model of two-component signaling, we show that the behavior can be explained by a monotonic change in a single parameter controlling protein-protein interaction strength. The results suggest one possible mode of evolution for two-component systems with bifunctional SKs whereby the remarkable properties and competing reactions that characterize these systems can emerge by combining mutations of the same effect.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular Direcionada , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Substituição de Aminoácidos/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais/genética
17.
Front Med Technol ; 3: 640981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047912

RESUMO

Antimicrobial peptides (AMPs) have been extensively studied due to their vast natural abundance and ability to kill microbes. In an era critically lacking in new antibiotics, manipulating AMPs for therapeutic application is a promising option. However, bacterial pathogens resistant to AMPs remain problematic. To improve AMPs antimicrobial efficacy, their use in conjunction with other antimicrobials has been proposed. How might this work? AMPs kill bacteria by forming pores in bacterial membranes or by inhibiting bacterial macromolecular functions. What remains unknown is the duration for which AMPs keep bacterial pores open, and the extent to which bacteria can recover by repairing these pores. In this mini-review, we discuss various antimicrobial synergies with AMPs. Such synergies might arise if the antimicrobial agents helped to keep bacterial pores open for longer periods of time, prevented pore repair, perturbed bacterial intracellular functions at greater levels, or performed other independent bacterial killing mechanisms. We first discuss combinations of AMPs, and then focus on histones, which have antimicrobial activity and co-localize with AMPs on lipid droplets and in neutrophil extracellular traps (NETs). Recent work has demonstrated that histones can enhance AMP-induced membrane permeation. It is possible that histones, histone fragments, and histone-like peptides could amplify the antimicrobial effects of AMPs, giving rise to antimicrobial synergy. If so, clarifying these mechanisms will thus improve our overall understanding of the antimicrobial processes and potentially contribute to improved drug design.

18.
Microb Cell ; 7(11): 309-311, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33150163

RESUMO

The rate at which antibiotics are discovered and developed has stagnated; meanwhile, antibacterial resistance continually increases and leads to a plethora of untreatable and deadly infections worldwide. Therefore, there is a critical need to develop new antimicrobial strategies to combat this alarming reality. One approach is to understand natural antimicrobial defense mechanisms that higher-level organisms employ in order to kill bacteria, potentially leading to novel antibiotic therapeutic approaches. Mammalian histones have long been reported to have antibiotic activity, with the first observation of their antibacterial properties reported in 1942. However, there have been doubts about whether histones could truly have any such role in the animal, predominantly based on two issues: they are found in the nucleus (so are not in a position to encounter bacteria), and their antibiotic activity in vitro has been relatively weak in physiological conditions. More recent studies have addressed both sets of concerns. Histones are released from cells as part of neutrophil extracellular traps (NETs) and are thus able to encounter extracellular bacteria. Histones are also present intracellularly in the cytoplasm attached to lipid droplets, positioning them to encounter cytosolic bacteria. Our recent work (Doolin et al., 2020, Nat Commun), which is discussed here, shows that histones have synergistic antimicrobial activities when they are paired with antimicrobial peptides (AMPs), which form pores in bacterial membranes and co-localize with histones in NETs. The work demonstrates that histones enhance AMP-mediated pores, impair bacterial membrane recovery, depolarize the bacterial proton gradient, and enter the bacterial cytoplasm, where they restructure the chromosome and inhibit transcription. Here, we examine potential mechanisms that are responsible for these outcomes.

19.
J Vis Exp ; (159)2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32510504

RESUMO

Swarming is a form of surface motility observed in many bacterial species including Pseudomonas aeruginosa and Escherichia coli. Here, dense populations of bacteria move over large distances in characteristic tendril-shaped communities over the course of hours. Swarming is sensitive to several factors including medium moisture, humidity, and nutrient content. In addition, the collective stress response, which is observed in P. aeruginosa that are stressed by antibiotics or bacteriophage (phage), repels swarms from approaching the area containing the stress. The methods described here address how to control the critical factors that affect swarming. We introduce a simple method to monitor swarming dynamics and the collective stress response with high temporal resolution using a flatbed document scanner, and describe how to compile and perform a quantitative analysis of swarms. This simple and cost-effective method provides precise and well-controlled quantification of swarming and may be extended to other types of plate-based growth assays and bacterial species.


Assuntos
Pseudomonas aeruginosa/fisiologia , Estresse Fisiológico , Imagem com Lapso de Tempo , Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Análise Custo-Benefício , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Imagem com Lapso de Tempo/economia
20.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156820

RESUMO

The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period.IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach.


Assuntos
Biofilmes/crescimento & desenvolvimento , NAD/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Microscopia de Fluorescência , Pseudomonas aeruginosa/enzimologia , Percepção de Quorum , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa