Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756605

RESUMO

Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the accuracy of proximity labeling is limited by a lack of control over the enzymatic labeling process. Here, we present a light-activated proximity labeling technology for mapping protein-protein interactions at the cell membrane with high accuracy and precision. Our technology, called light-activated BioID (LAB), fuses the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. We demonstrate, in multiple cell lines, that upon illumination with blue light, CRY2 and CIB1 dimerize, reconstitute split-TurboID and initiate biotinylation. Turning off the light leads to the dissociation of CRY2 and CIB1 and halts biotinylation. We benchmark LAB against the widely used TurboID proximity labeling method by measuring the proteome of E-cadherin, an essential cell-cell adhesion protein. We show that LAB can map E-cadherin-binding partners with higher accuracy and significantly fewer false positives than TurboID.


Assuntos
Caderinas , Proteoma , Linhagem Celular , Caderinas/genética , Caderinas/metabolismo , Biotinilação
2.
J Immunol ; 211(3): 343-349, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459190

RESUMO

Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.


Assuntos
Caderinas , Caderinas/metabolismo , Adesão Celular/fisiologia , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 119(32): e2204473119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921442

RESUMO

E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped ß-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.


Assuntos
Anticorpos Monoclonais , Caderinas , Adesão Celular , Anticorpos Monoclonais/química , Caderinas/química , Caderinas/imunologia , Cristalografia por Raios X , Humanos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301871

RESUMO

Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.


Assuntos
Caderinas/química , Caderinas/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Citoesqueleto , Cães , Células Madin Darby de Rim Canino , Miosina Tipo II/metabolismo , Ligação Proteica , Vinculina/metabolismo
5.
Biophys J ; 122(15): 3069-3077, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345249

RESUMO

Cadherin intermolecular interactions are critical for cell-cell adhesion and play essential roles in tissue formation and the maintenance of tissue structures. In this study, we focus on E-cadherin, a classical cadherin that connects epithelial cells, to understand how they interact in cis and trans conformations when attached to the same cell or opposing cells. We employ coevolutionary sequence analysis and molecular dynamics simulations to confirm previously known interaction sites as well as to identify new interaction sites. The sequence coevolutionary results yield a surprising result indicating that there are no strongly favored intermolecular interaction sites, which is unusual and suggests that many interaction sites may be possible, with none being strongly preferred over others. By using molecular dynamics, we test the persistence of these interactions and how they facilitate adhesion. We build several types of cadherin assemblages, with different numbers and combinations of cis and trans interfaces to understand how these conformations act to facilitate adhesion. Our results suggest that, in addition to the established interaction sites on the EC1 and EC2 domains, an additional plausible cis interface at the EC3-EC5 domain exists. Furthermore, we identify specific mutations at cis/trans binding sites that impair adhesion within E-cadherin assemblages.


Assuntos
Caderinas , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Mutação , Ligação Proteica , Animais , Camundongos
6.
Proc Natl Acad Sci U S A ; 117(49): 31157-31165, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229577

RESUMO

We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2ß1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.


Assuntos
Caderinas/genética , Efrina-B1/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Caderinas/ultraestrutura , Adesão Celular/genética , Citoplasma/genética , Citoplasma/ultraestrutura , Desmocolinas , Desmogleína 2/genética , Desmogleína 2/ultraestrutura , Desmoplaquinas/genética , Desmoplaquinas/ultraestrutura , Desmossomos/genética , Desmossomos/ultraestrutura , Efrina-B1/ultraestrutura , Humanos , Integrinas/genética , Integrinas/ultraestrutura , Microscopia de Força Atômica , Domínios Proteicos/genética , Imagem Individual de Molécula
7.
Proc Natl Acad Sci U S A ; 113(39): E5711-20, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621473

RESUMO

Classical cadherin cell-cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces.


Assuntos
Caderinas/química , Caderinas/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Termodinâmica
8.
Exp Cell Res ; 358(1): 10-13, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28300566

RESUMO

Classical cadherin transmembrane cell-cell adhesion proteins play essential roles in tissue morphogenesis and in mediating tissue integrity. Cadherin ectodomains from opposing cells interact to form load-bearing trans dimers that mechanically couple cells. Cell-cell adhesion is believed to be strengthened by cis clustering of cadherins on the same cell surface. This review summarizes biophysical studies of the structure, interaction kinetics and biomechanics of classical cadherin ectodomains. We first discuss the structure and equilibrium binding kinetics of classical cadherin trans and cis dimers. We then discuss how mechanical stimuli alters the kinetics of cadherin interaction and tunes adhesion. Finally, we highlight open questions on the role of mechanical forces in influencing cadherin structure, function and organization on the cell surface.


Assuntos
Caderinas/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Ligação Proteica/fisiologia , Multimerização Proteica/fisiologia , Animais , Humanos , Morfogênese/fisiologia
9.
J Chem Phys ; 148(12): 123301, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604850

RESUMO

Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xß) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xß can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xß, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

10.
J Cell Sci ; 127(Pt 10): 2339-50, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610950

RESUMO

Adhesion between cells is established by the formation of specialized intercellular junctional complexes, such as desmosomes. Desmosomes contain isoforms of two members of the cadherin superfamily of cell adhesion proteins, desmocollins (Dsc) and desmogleins (Dsg), but their combinatorial roles in desmosome assembly are not understood. To uncouple desmosome assembly from other cell-cell adhesion complexes, we used micro-patterned substrates of Dsc2aFc and/or Dsg2Fc and collagen IV; we show that Dsc2aFc, but not Dsg2Fc, was necessary and sufficient to recruit desmosome-specific desmoplakin into desmosome puncta and produce strong adhesive binding. Single-molecule force spectroscopy showed that monomeric Dsc2a, but not Dsg2, formed Ca(2+)-dependent homophilic bonds, and that Dsg2 formed Ca(2+)-independent heterophilic bonds with Dsc2a. A W2A mutation in Dsc2a inhibited Ca(2+)-dependent homophilic binding, similar to classical cadherins, and Dsc2aW2A, but not Dsg2W2A, was excluded from desmosomes in MDCK cells. These results indicate that Dsc2a, but not Dsg2, is required for desmosome assembly through homophilic Ca(2+)- and W2-dependent binding, and that Dsg2 might be involved later in regulating a switch to Ca(2+)-independent adhesion in mature desmosomes.


Assuntos
Caderinas/metabolismo , Desmossomos/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Desmogleínas/metabolismo , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Análise Espectral
11.
Proc Natl Acad Sci U S A ; 109(46): 18815-20, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112161

RESUMO

Classical cadherin cell-cell adhesion proteins play key morphogenetic roles during development and are essential for maintaining tissue integrity in multicellular organisms. Classical cadherins bind in two distinct conformations, X-dimer and strand-swap dimer; during cellular rearrangements, these adhesive states are exposed to mechanical stress. However, the molecular mechanisms by which cadherins resist tensile force and the pathway by which they convert between different conformations are unclear. Here, we use single molecule force measurements with an atomic force microscope (AFM) to show that E-cadherin, a prototypical classical cadherin, forms three types of adhesive bonds: catch bonds, which become longer lived in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds that are insensitive to mechanical stress. We show that X-dimers form catch bonds, whereas strand-swap dimers form slip bonds. Our data suggests that ideal bonds are formed as X-dimers convert to strand-swap binding. Catch, slip, and ideal bonds allow cadherins to withstand tensile force and tune the mechanical properties of adhesive junctions.


Assuntos
Caderinas/química , Multimerização Proteica , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Microscopia de Força Atômica/métodos , Estrutura Quaternária de Proteína
12.
Phys Chem Chem Phys ; 16(6): 2211-23, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24419646

RESUMO

Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.


Assuntos
Aderência Bacteriana , Moléculas de Adesão Celular/metabolismo , Adesão Celular , Escherichia coli/metabolismo , Adesinas de Escherichia coli/metabolismo , Animais , Fenômenos Biomecânicos , Simulação por Computador , Escherichia coli/citologia , Proteínas de Fímbrias/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Estresse Mecânico , Fator de von Willebrand/metabolismo
13.
Structure ; 32(2): 217-227.e3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052206

RESUMO

E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped ß-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.


Assuntos
Caderinas , Simulação de Dinâmica Molecular , Caderinas/metabolismo , Ligação Proteica , Adesão Celular
14.
Subcell Biochem ; 60: 63-88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22674068

RESUMO

Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.


Assuntos
Biofísica , Caderinas/metabolismo , Adesão Celular/fisiologia , Animais , Caderinas/química , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
15.
Nano Lett ; 12(7): 3731-5, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22703235

RESUMO

We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.


Assuntos
DNA/química , Fluorescência , Nanotecnologia/métodos , Microscopia de Força Atômica , Nanotecnologia/instrumentação , Conformação de Ácido Nucleico , Propriedades de Superfície
16.
Methods Mol Biol ; 2600: 63-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587090

RESUMO

Cell adhesion proteins play essential roles in the formation, regeneration, and maintenance of tissue. However, the molecular mechanisms by which cells regulate the conformation and binding properties of adhesion proteins are poorly understood. These biophysical properties can be resolved, with single-molecule resolution, using atomic force microscopy (AFM). Here, we outline how AFM force measurements can be used to study the conformation, cytoskeletal linkage, binding strength, and force-dependent bond lifetimes of adhesion proteins in live cells.


Assuntos
Moléculas de Adesão Celular , Microscopia de Força Atômica , Conformação Molecular , Adesão Celular/fisiologia
17.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461464

RESUMO

E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8 mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site directed mutagenesis and single molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped ß-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.

18.
Proc Natl Acad Sci U S A ; 106(1): 109-14, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19114658

RESUMO

The cadherin family of Ca(2+)-dependent cell adhesion proteins are critical for the morphogenesis and functional organization of tissues in multicellular organisms, but the molecular interactions between cadherins that are at the core of cell-cell adhesion are a matter of considerable debate. A widely-accepted model is that cadherins adhere in 3 stages. First, the functional unit of cadherin adhesion is a cis dimer formed by the binding of the extracellular regions of 2 cadherins on the same cell surface. Second, formation of low-affinity trans interactions between cadherin cis dimers on opposing cell surfaces initiates cell-cell adhesion. Third, lateral clustering of cadherins cooperatively strengthens intercellular adhesion. Evidence of these cadherin binding states during adhesion is, however, contradictory, and evidence for cooperativity is lacking. We used single-molecule structural (fluorescence resonance energy transfer) and functional (atomic force microscopy) assays to demonstrate directly that cadherin monomers interact via their N-terminal EC1 domain to form trans adhesive complexes. We could not detect the formation of cadherin cis dimers, but found that increasing the density of cadherin monomers cooperatively increased the probability of trans adhesive binding.


Assuntos
Caderinas/química , Domínios e Motivos de Interação entre Proteínas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Dimerização , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Força Atômica , Modelos Químicos , Complexos Multiproteicos , Ligação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transfecção
19.
Nano Lett ; 11(6): 2358-62, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21595450

RESUMO

Recent advances in the synthesis of multicomponent nanocrystals have enabled the design of nanocrystal molecules with unique photophysical behavior and functionality. Here we demonstrate a highly luminescent nanocrystal molecule, the CdSe/CdS core/shell tetrapod, which is designed to have weak vibronic coupling between excited states and thereby violates Kasha's rule via emission from multiple excited levels. Using single particle photoluminescence spectroscopy, we show that in addition to the expected LUMO to HOMO radiative transition, a higher energy transition is allowed via spatially indirect recombination. The oscillator strength of this transition can be experimentally controlled, enabling control over carrier behavior and localization at the nanoscale.


Assuntos
Compostos de Cádmio/química , Luminescência , Nanoestruturas/química , Compostos de Selênio/química , Sulfetos/química , Tamanho da Partícula , Propriedades de Superfície
20.
FEBS Lett ; 596(13): 1639-1646, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35532156

RESUMO

Cadherins are essential cell-cell adhesion proteins that interact in two distinct conformations: X-dimers and strand-swap dimers. Both X-dimers and strand-swap dimers are thought to exclusively rely on symmetric sets of interactions between key amino acids on both cadherin binding partners. Here, we use single-molecule atomic force microscopy and computer simulations to show that symmetry in cadherin binding is dispensable and that cadherins can also interact in a novel conformation that asymmetrically incorporates key elements of both strand-swap dimers and X-dimers. Our results clarify the biophysical rules for cadherin binding and demonstrate that cadherins interact in a more diverse range of conformations than previously understood.


Assuntos
Caderinas , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Dimerização , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa