Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
2.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369204

RESUMO

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Assuntos
Monoéster Fosfórico Hidrolases , Phytophthora , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Fosfatase 2/metabolismo , Doenças das Plantas
3.
Cell ; 161(5): 1089-1100, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000484

RESUMO

Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Bactérias/imunologia , Imunidade Inata , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Nicotiana/imunologia , Nicotiana/microbiologia
4.
Nature ; 574(7778): 423-427, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597961

RESUMO

The blast fungus Magnaporthe oryzae gains entry to its host plant by means of a specialized pressure-generating infection cell called an appressorium, which physically ruptures the leaf cuticle1,2. Turgor is applied as an enormous invasive force by septin-mediated reorganization of the cytoskeleton and actin-dependent protrusion of a rigid penetration hypha3. However, the molecular mechanisms that regulate the generation of turgor pressure during appressorium-mediated infection of plants remain poorly understood. Here we show that a turgor-sensing histidine-aspartate kinase, Sln1, enables the appressorium to sense when a critical turgor threshold has been reached and thereby facilitates host penetration. We found that the Sln1 sensor localizes to the appressorium pore in a pressure-dependent manner, which is consistent with the predictions of a mathematical model for plant infection. A Δsln1 mutant generates excess intracellular appressorium turgor, produces hyper-melanized non-functional appressoria and does not organize the septins and polarity determinants that are required for leaf infection. Sln1 acts in parallel with the protein kinase C cell-integrity pathway as a regulator of cAMP-dependent signalling by protein kinase A. Pkc1 phosphorylates the NADPH oxidase regulator NoxR and, collectively, these signalling pathways modulate appressorium turgor and trigger the generation of invasive force to cause blast disease.


Assuntos
Ascomicetos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/metabolismo , Hifas , NADPH Oxidases/metabolismo , Oryza/fisiologia
5.
New Phytol ; 241(4): 1763-1779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823353

RESUMO

Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidases , Imunidade Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Oxirredutases/metabolismo , Fagocitose , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33677602

RESUMO

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Phytophthora infestans/fisiologia , Proteínas/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteínas SNARE/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia
7.
PLoS Biol ; 19(8): e3001136, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424903

RESUMO

In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.


Assuntos
Evolução Biológica , Proteínas de Helminto/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas NLR/fisiologia , Solanaceae/microbiologia , Morte Celular , Resistência à Doença
8.
Nature ; 563(7733): E30, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333630

RESUMO

In Extended Data Fig. 5d of this Letter, the blots for anti-pS612 and anti-BAK1 were inadvertently duplicated. This figure has been corrected online.

9.
Nature ; 561(7722): 248-252, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177827

RESUMO

Multicellular organisms use cell-surface receptor kinases to sense and process extracellular signals. Many plant receptor kinases are activated by the formation of ligand-induced complexes with shape-complementary co-receptors1. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat receptor kinases (LRR-RKs) to control immunity, growth and development2. Here we report key regulatory events that control the function of BAK1 and, more generally, LRR-RKs. Through a combination of phosphoproteomics and targeted mutagenesis, we identified conserved phosphosites that are required for the immune function of BAK1 in Arabidopsis thaliana. Notably, these phosphosites are not required for BAK1-dependent brassinosteroid-regulated growth. In addition to revealing a critical role for the phosphorylation of the BAK1 C-terminal tail, we identified a conserved tyrosine phosphosite that may be required for the function of the majority of Arabidopsis LRR-RKs, and which separates them into two distinct functional classes based on the presence or absence of this tyrosine. Our results suggest a phosphocode-based dichotomy of BAK1 function in plant signalling, and provide insights into receptor kinase activation that have broad implications for our understanding of how plants respond to their changing environment.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Arabidopsis/química , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Ligantes , Modelos Moleculares , Fosforilação , Fosfotirosina/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/imunologia
10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531323

RESUMO

Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/fisiologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Expressão Gênica , Imunidade Inata/genética , Ligantes , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia
11.
PLoS Biol ; 17(7): e3000373, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329577

RESUMO

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
12.
Mol Cell ; 54(1): 43-55, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24630626

RESUMO

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Imunidade Inata , NADPH Oxidases/imunologia , Nicotiana/enzimologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Linhagem Celular , Ativação Enzimática , Flagelina/imunologia , Flagelina/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ligantes , Dados de Sequência Molecular , Complexos Multienzimáticos , NADPH Oxidases/genética , Fator Tu de Elongação de Peptídeos/imunologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
13.
New Phytol ; 221(4): 2160-2175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30300945

RESUMO

Plant immunity consists of two arms: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), induced by surface-localized receptors, and effector-triggered immunity (ETI), induced by intracellular receptors. Despite the little structural similarity, both receptor types activate similar responses with different dynamics. To better understand phosphorylation events during ETI, we employed a phosphoproteomic screen using an inducible expression system of the bacterial effector avrRpt2 in Arabidopsis thaliana, and identified 109 differentially phosphorylated residues of membrane-associated proteins on activation of the intracellular RPS2 receptor. Interestingly, several RPS2-regulated phosphosites overlap with sites that are regulated during PTI, suggesting that these phosphosites may be convergent points of both signaling arms. Moreover, some of these sites are residues of important defense components, including the NADPH oxidase RBOHD, ABC-transporter PEN3, calcium-ATPase ACA8, noncanonical Gα protein XLG2 and H+ -ATPases. In particular, we found that S343 and S347 of RBOHD are common phosphorylation targets during PTI and ETI. Our mutational analyses showed that these sites are required for the production of reactive oxygen species during both PTI and ETI, and immunity against avirulent bacteria and a virulent necrotrophic fungus. We provide, for the first time, large-scale phosphoproteomic data of ETI, thereby suggesting crucial roles of common phosphosites in plant immunity.


Assuntos
Arabidopsis/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosfoproteínas/metabolismo , Imunidade Vegetal , Proteômica , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Autoimunidade/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Fosforilação , Imunidade Vegetal/genética , ATPases Translocadoras de Prótons/metabolismo , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Virulência
14.
Proc Natl Acad Sci U S A ; 113(12): 3389-94, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26944079

RESUMO

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas e Peptídeos de Choque Frio/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
15.
PLoS Pathog ; 12(8): e1005811, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494702

RESUMO

Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Fosfoproteínas Fosfatases/imunologia , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Fosfoproteínas Fosfatases/genética , Fosforilação/genética , Fosforilação/imunologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/genética
16.
New Phytol ; 220(1): 232-248, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156022

RESUMO

The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas Nucleares/metabolismo , Oomicetos/metabolismo , Imunidade Vegetal , Proteínas/metabolismo , ADP Ribose Transferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutação/genética , Proteínas Nucleares/genética , Oomicetos/efeitos dos fármacos , Oomicetos/isolamento & purificação , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos
17.
Plant Cell ; 27(11): 3277-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566920

RESUMO

Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Septinas/metabolismo , Hifas/metabolismo , Imunoprecipitação , Subunidades Proteicas/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/metabolismo , Frações Subcelulares/metabolismo
18.
EMBO Rep ; 17(3): 441-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769563

RESUMO

Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the activation of mitogen-activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Flagelina/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Imunidade Vegetal , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Espécies Reativas de Oxigênio/metabolismo
19.
Cell Microbiol ; 18(4): 453-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26426202

RESUMO

Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane-rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified chloroplast-targeted protein 1 (CTP1), a candidate effector from the poplar leaf rust fungus Melampsora larici-populina that carries a predicted transit peptide and accumulates in chloroplasts and mitochondria. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts. CTP1 is part of a Melampsora-specific family of polymorphic secreted proteins. Two members of that family, CTP2 and CTP3, also translocate in chloroplasts in an N-terminal signal-dependent manner. CTP1, CTP2 and CTP3 are cleaved when they accumulate in chloroplasts, while they remain intact when they do not translocate into chloroplasts. Our findings reveal that fungi have evolved effector proteins that mimic plant-specific sorting signals to traffic within plant cells.


Assuntos
Cloroplastos/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Virulência/metabolismo , Basidiomycota/fisiologia , Mimetismo Molecular , Doenças das Plantas/microbiologia , Populus/microbiologia , Transporte Proteico
20.
Mol Cell Proteomics ; 14(7): 1796-813, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900983

RESUMO

The cell's endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein markers of the endomembrane system.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endossomos/metabolismo , Proteômica/métodos , Via Secretória , Cromatografia de Afinidade , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa