Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Faraday Discuss ; 245(0): 327-351, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293920

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.8 kJ mol-1 to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C6H6N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to the aromatic ring of C6H6, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C6H6N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan's atmosphere. In all conditions the ring-contraction channel leading to C5H5 (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to o-C6H5N (o-N-cycloheptatriene radical) + H, C4H4N (pyrrolyl) + C2H2 (acetylene), C5H5CN (cyano-cyclopentadiene) + H, and p-C6H5N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10-10 cm3 s-1 over the 50-296 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.

2.
J Phys Chem A ; 127(21): 4609-4623, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207281

RESUMO

The reaction between the ground-state hydroxyl radical, OH(2Π), and ethylene, C2H4, has been investigated under single-collision conditions by the crossed molecular beam scattering technique with mass-spectrometric detection and time-of-flight analysis at the collision energy of 50.4 kJ/mol. Electronic structure calculations of the underlying potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of product branching fractions on the derived PES for the addition pathway have been performed. The theoretical results indicate a temperature-dependent competition between the anti-/syn-CH2CHOH (vinyl alcohol) + H, CH3CHO (acetaldehyde) + H, and H2CO (formaldehyde) + CH3 product channels. The yield of the H-abstraction channel could not be quantified with the employed methods. The RRKM results predict that under our experimental conditions, the anti- and syn-CH2CHOH + H product channels account for 38% (in similar amounts) of the addition mechanism yield, the H2CO + CH3 channel for ∼58%, while the CH3CHO + H channel is formed in negligible amount (<4%). The implications for combustion and astrochemical environments are discussed.

3.
J Phys Chem A ; 126(22): 3569-3582, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640168

RESUMO

The reaction between cyano radicals (CN, X2Σ+) and cyanoethene (C2H3CN) has been investigated by a combined approach coupling crossed molecular beam (CMB) experiments with mass spectrometric detection and time-of-flight analysis at a collision energy of 44.6 kJ mol-1 and electronic structure calculations to determine the relevant potential energy surface. The experimental results can be interpreted by assuming the occurrence of a dominant reaction pathway leading to the two but-2-enedinitrile (1,2-dicyanothene) isomers (E- and Z-NC-CH═CH-CN) in a H-displacement channel and, to a much minor extent, to 1,1-dicyanoethene, CH2C(CN)2. In order to derive the product branching ratios under the conditions of the CMB experiments and at colder temperatures, including those relevant to Titan and to cold interstellar clouds, we have carried out RRKM statistical calculations using the relevant potential energy surface of the investigated reaction. We have also estimated the rate coefficient at very low temperatures by employing a semiempirical method for the treatment of long-range interactions. The reaction has been found to be barrierless and fast also under the low temperature conditions of cold interstellar clouds and the atmosphere of Titan. Astrophysical implications and comparison with literature data are also presented. On the basis of the present work, 1,2-dicyanothene and 1,1-dicyanothene are excellent candidates for the search of dinitriles in the interstellar medium.

4.
J Phys Chem A ; 126(36): 6110-6123, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053010

RESUMO

The reaction of electronically excited nitrogen atoms, N(2D), with vinyl cyanide, CH2CHCN, has been investigated under single-collision conditions by the crossed molecular beam (CMB) scattering method with mass spectrometric detection and time-of-flight (TOF) analysis at the collision energy, Ec, of 31.4 kJ/mol. Synergistic electronic structure calculations of the doublet potential energy surface (PES) have been performed to assist in the interpretation of the experimental results and characterize the overall reaction micromechanism. Statistical (Rice-Ramsperger-Kassel-Marcus, RRKM) calculations of product branching fractions (BFs) on the theoretical PES have been carried out at different values of temperature, including the one corresponding to the temperature (175 K) of Titan's stratosphere and at a total energy corresponding to the Ec of the CMB experiment. According to our theoretical calculations, the reaction is found to proceed via barrierless addition of N(2D) to the carbon-carbon double bond of CH2═CH-CN, followed by the formation of cyclic and linear intermediates that can undergo H, CN, and HCN elimination. In competition, the N(2D) addition to the CN group is also possible via a submerged barrier, leading ultimately to N2 + C3H3 formation, the most exothermic of all possible channels. Product angular and TOF distributions have been recorded for the H-displacement channels leading to the formation of a variety of possible C3H2N2 isomeric products. Experimentally, no evidence of CN, HCN, and N2 forming channels was observed. These findings were corroborated by the theory, which predicts a variety of competing product channels, following N(2D) addition to the double bond, with the main ones, at Ec = 31.4 kJ/mol, being six isomeric H forming channels: c-CH(N)CHCN + H (BF = 35.0%), c-CHNCHCN + H (BF = 28.1%), CH2NCCN + H (BF = 26.3%), c-CH2(N)CCN(cyano-azirine) + H (BF = 7.4%), trans-HNCCHCN + H (BF = 1.6%), and cis-HNCCHCN + H (BF = 1.3%), while C-C bond breaking channels leading to c-CH2(N)CH(2H-azirine) + CN and c-CH2(N)C + HCN are predicted to be negligible (0.02% and 0.2%, respectively). The highly exothermic N2 + CH2CCH (propargyl) channel is also predicted to be negligible because of the very high isomerization barrier from the initial addition intermediate to the precursor intermediate able to lead to products. The predicted product BFs are found to have, in general, a very weak energy dependence. The above cyclic and linear products containing an additional C-N bond could be potential precursors of more complex, N-rich organic molecules that contribute to the formation of the aerosols on Titan's upper atmosphere. Overall, the results are expected to have a significant impact on the gas-phase chemistry of Titan's atmosphere and should be properly included in the photochemical models.

5.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408696

RESUMO

The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.

6.
J Phys Chem A ; 125(40): 8846-8859, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609869

RESUMO

The reaction of excited nitrogen atoms N(2D) with CH3CCH (methylacetylene) was investigated under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.0 kJ/mol. Synergistic electronic structure calculations of the doublet potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction micromechanism. Theoretically, the reaction is found to proceed via a barrierless addition of N(2D) to the carbon-carbon triple bond of CH3CCH and an insertion of N(2D) into the CH bond of the methyl group, followed by the formation of cyclic and linear intermediates that can undergo H, CH3, and C2H elimination or isomerize to other intermediates before unimolecularly decaying to a variety of products. Kinetic calculations for addition and insertion mechanisms and statistical (Rice-Ramsperger-Kassel-Marcus) computations of product branching fractions (BFs) on the theoretical PES were performed at different values of total energy, including the one corresponding to the temperature (175 K) of Titan's stratosphere and that of the CMB experiment. Up to 14 competing product channels were statistically predicted, with the main ones, at Ec = 31.0 kJ/mol, being the formation of CH2NH (methanimine) + C2H (ethylidyne) (BF = 0.41), c-C(N)CH + CH3 (BF = 0.32), CH2CHCN (acrylonitrile) + H (BF = 0.12), and c-CH2C(N)CH + H (BF = 0.04). Of the 14 possible channels, seven correspond to H displacement channels of different exothermicity, for a total H channel BF of ∼0.25 at Ec = 31.0 kJ/mol. Experimentally, dynamical information could only be obtained about the overall H channels. In particular, the experiment corroborates the formation of acrylonitrile + H, which is the most exothermic of all 14 reaction channels and is theoretically calculated to be the dominant H-forming channel (BF = 0.12). The products containing a novel C-N bond could be potential precursors to form other nitriles (C2N2, C3N) or more complex organic species containing N atoms in planetary atmospheres, such as those of Titan and Pluto. Overall, the results are expected to have a potentially significant impact on the understanding of the gas-phase chemistry of Titan's atmosphere and the modeling of that atmosphere.

7.
Phys Chem Chem Phys ; 20(8): 5478-5489, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29082409

RESUMO

The reaction between cyano radicals (which are ubiquitous in interstellar clouds) and methylamine (a molecule detected in various interstellar sources) has been investigated in a synergistic experimental and theoretical study. The reaction has been found to be very fast in the entire range of temperatures investigated (23-297 K) by using a CRESU apparatus coupled to pulsed laser photolysis - laser induced fluorescence. The global experimental rate coefficient is given by In addition, dedicated electronic structure calculations of the underlying potential energy surface have been performed, together with capture theory and RRKM calculations. The experimental data have been interpreted in the light of the theoretical calculations and the product branching ratio has been established. According to the present study, in the range of temperatures investigated the title reaction is an efficient interstellar route of formation of cyanamide, NH2CN, another interstellar species. The second most important channel is the one leading to methyl cyanamide, CH3NHCN (an isomer of aminoacetonitrile), via a CN/H exchange mechanism with a yield of 12% of the global reaction in the entire range of temperatures explored. For a possible inclusion in future astrochemical models we suggest, by referring to the usual expression the following values: α = 3.68 × 10-12 cm3 molec-1 s-1, ß = -1.80, γ = 7.79 K for the channel leading to NH2CN + CH3; α = 5.05 × 10-13 cm3 molec-1 s-1, ß = -1.82, γ = 7.93 K for the channel leading to CH3NHCN + H.

8.
J Chem Phys ; 138(2): 024311, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320687

RESUMO

The reaction involving atomic carbon in its first electronically excited state (1)D and methane has been investigated in crossed molecular beam experiments at a collision energy of 25.3 kJ mol(-1). Electronic structure calculations of the underlying potential energy surface (PES) and Rice-Ramsperger-Kassel-Marcus (RRKM) estimates of rates and branching ratios have been performed to assist the interpretation of the experimental results. The reaction proceeds via insertion of C((1)D) into one of the C-H bonds of methane leading to the formation of the intermediate HCCH(3) (methylcarbene or ethylidene), which either decomposes directly into the products C(2)H(3) + H or C(2)H(2) + H(2) or isomerizes to the more stable ethylene, which in turn dissociates into C(2)H(3) + H or H(2)CC + H(2). The experimental results indicate that the H-displacement and H(2)-elimination channels are of equal importance and that for both channels the reaction mechanism is controlled by the presence of a bound intermediate, the lifetime of which is comparable to its rotational period. On the contrary, RRKM estimates predict a very short lifetime for the insertion intermediate and the dominance of the H-displacement channel. It is concluded that the reaction C((1)D) + CH(4) cannot be described statistically and a dynamical treatment is necessary to understand its mechanism. Possibly, nonadiabatic effects are responsible for the discrepancies, as triplet and singlet PES of methylcarbene cross each other and intersystem crossing is possible. Similarities with the photodissociation of ethylene and with the related reactions N((2)D) + CH(4), O((1)D) + CH(4) and S((1)D) + CH(4) are also commented on.

9.
J Phys Chem A ; 116(43): 10467-79, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23016665

RESUMO

The dynamics of the H displacement channels in the reaction N((2)D) + C(2)H(4) have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (17.2 and 28.2 kJ/mol). The interpretation of the scattering results is assisted by new electronic structure calculations of stationary points and product energetics for the C(2)H(4)N ground state doublet potential energy surface. RRKM statistical calculations have been performed to derive the product branching ratio under the conditions of the present experiments and of the atmosphere of Titan. Similarities and differences with respect to a recent study performed in crossed beam experiments coupled to ionization via tunable VUV synchrotron radiation are discussed (Lee, S.-H.; et al. Phys. Chem. Chem. Phys.2011, 13, 8515-8525). Implications for the atmospheric chemistry of Titan are presented.

10.
J Chem Phys ; 136(13): 134319, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22482564

RESUMO

For the first time in the literature, rigorous time-independent quantum scattering formalism was applied, by means of the ABC program, to the H + Li(2) → LiH + Li reaction. The state-to-state probabilities as a function of the total energy have been computed at zero total angular momentum (J = 0) allowing us to evaluate the effect of vibrational/rotational excitation on the reaction promotion/inhibition, the energetic distribution of products, and the temperature dependence of the J-shifting thermal rate coefficients.

11.
ACS Earth Space Chem ; 6(10): 2305-2321, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36303717

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.

12.
Am J Sports Med ; 49(3): 780-789, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33507808

RESUMO

BACKGROUND: More than 450,000 rotator cuff repairs are performed annually, yet healing of tendon to bone often fails. This failure is rooted in the fibrovascular healing response, which does not regenerate the native attachment site. Better healing outcomes may be achieved by targeting inflammation during the early period after repair. Rather than broad inhibition of inflammation, which may impair healing, the current study utilized a molecularly targeted approach to suppress IKKß, shutting down only the inflammatory arm of the nuclear factor κB (NF-κB) signaling pathway. PURPOSE: To evaluate the therapeutic potential of IKKß inhibition in a clinically relevant model of rat rotator cuff repair. STUDY DESIGN: Controlled laboratory study. METHODS: After validating the efficacy of the IKKß inhibitor in vitro, it was administered orally once a day for 7 days after surgery in a rat rotator cuff repair model. The effect of treatment on reducing inflammation and improving repair quality was evaluated after 3 days and 2, 4, and 8 weeks of healing, using gene expression, biomechanics, bone morphometry, and histology. RESULTS: Inhibition of IKKß attenuated cytokine and chemokine production in vitro, demonstrating the potential for this inhibitor to reduce inflammation in vivo. Oral treatment with IKKß inhibitor reduced NF-κB target gene expression by up to 80% compared with a nontreated group at day 3, with a subset of these genes suppressed through 14 days. Furthermore, the IKKß inhibitor led to enhanced tenogenesis and extracellular matrix production, as demonstrated by gene expression and histological analyses. At 4 weeks, inhibitor treatment led to increased toughness, no effects on failure load and strength, and decreases in stiffness and modulus when compared with vehicle control. At 8 weeks, IKKß inhibitor treatment led to increased toughness, failure load, and strength compared with control animals. IKKß inhibitor treatment prevented the bone loss near the tendon attachment that occurred in repairs in control. CONCLUSION: Pharmacological inhibition of IKKß successfully suppressed excessive inflammation and enhanced tendon-to-bone healing after rotator cuff repair in a rat model. CLINICAL RELEVANCE: The NF-κB pathway is a promising target for enhancing outcomes after rotator cuff repair.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Quinase I-kappa B , Ratos , Manguito Rotador/cirurgia , Tendões , Cicatrização
13.
J Bone Miner Res ; 36(11): 2243-2257, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405443

RESUMO

Nonunion is defined as the permanent failure of a fractured bone to heal, often necessitating surgical intervention. Atrophic nonunions are a subtype that are particularly difficult to treat. Animal models of atrophic nonunion are available; however, these require surgical or radiation-induced trauma to disrupt periosteal healing. These methods are invasive and not representative of many clinical nonunions where osseous regeneration has been arrested by a "failure of biology". We hypothesized that arresting osteoblast cell proliferation after fracture would lead to atrophic nonunion in mice. Using mice that express a thymidine kinase (tk) "suicide gene" driven by the 3.6Col1a1 promoter (Col1-tk), proliferating osteoblast lineage cells can be ablated upon exposure to the nucleoside analog ganciclovir (GCV). Wild-type (WT; control) and Col1-tk littermates were subjected to a full femur fracture and intramedullary fixation at 12 weeks age. We confirmed abundant tk+ cells in fracture callus of Col-tk mice dosed with water or GCV, specifically many osteoblasts, osteocytes, and chondrocytes at the cartilage-bone interface. Histologically, we observed altered callus composition in Col1-tk mice at 2 and 3 weeks postfracture, with significantly less bone and more fibrous tissue. Col1-tk mice, monitored for 12 weeks with in vivo radiographs and micro-computed tomography (µCT) scans, had delayed bone bridging and reduced callus size. After euthanasia, ex vivo µCT and histology showed failed union with residual bone fragments and fibrous tissue in Col1-tk mice. Biomechanical testing showed a failure to recover torsional strength in Col1-tk mice, in contrast to WT. Our data indicates that suppression of proliferating osteoblast-lineage cells for at least 2 weeks after fracture blunts the formation and remodeling of a mineralized callus leading to a functional nonunion. We propose this as a new murine model of atrophic nonunion. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Animais , Calo Ósseo/diagnóstico por imagem , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Camundongos , Osteoblastos , Microtomografia por Raio-X
14.
J Orthop Surg (Hong Kong) ; 26(1): 2309499018757531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29514543

RESUMO

Our aim was to evaluate the outcome of our surgical technique for the repair of complete distal biceps tendon rupture in nonprofessional athletes. We examined the effect of our surgical technique in restoring the functionality of 11 injured limbs by correlating the total functional outcome of the repaired limb with their contralateral side.


Assuntos
Articulação do Cotovelo/cirurgia , Procedimentos Ortopédicos/métodos , Traumatismos dos Tendões/cirurgia , Tendões/cirurgia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Ruptura , Adulto Jovem
15.
J Hand Surg Asian Pac Vol ; 23(2): 198-204, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29734905

RESUMO

BACKGROUND: Simultaneous compression of the median and ulnar nerve at the elbow region has not been sufficiently highlighted in the literature. The purposes of the present study are to report our experience regarding this entity, to elucidate the clinical features, and to describe the operative technique and findings as well as the results of simultaneous decompression performed through the same medial incision. METHODS: We performed a retrospective study of thirteen elbows in thirteen patients -nine men and four women- with simultaneous compression of the median and ulnar nerve at the elbow region between 2000 and 2011. All were manual workers. Diagnosis was largely based on symptoms, patterns of paresthesia, and specific tests. Surgical decompression of both nerves at the same time was performed through a single anteromedial incision creating large flaps. RESULTS: Patients were followed for a mean of thirty-eight months (range seven to ninety six). Resting pain in the proximal forearm as well as sudden onset of numbness in the ring and little fingers were reported by all patients. Nerve conduction studies were positive only for cubital tunnel syndrome. In all patients symptoms subsided following surgical decompression. At the time of final follow up there is no evidence of recurrence. CONCLUSIONS: Proximal median nerve compression can be seen in association with cubital tunnel syndrome. Careful evaluation of the reported symptoms as well as thorough clinical examination are the keystone of the correct diagnosis. Also, on the basis of this study, we believe that concurrent decompression can be performed through a single medial incision, though extensive dissection may be required.


Assuntos
Síndrome do Túnel Carpal/complicações , Síndrome do Túnel Carpal/cirurgia , Síndrome do Túnel Ulnar/complicações , Síndrome do Túnel Ulnar/cirurgia , Descompressão Cirúrgica , Articulação do Cotovelo , Adulto , Idoso , Síndrome do Túnel Carpal/diagnóstico , Síndrome do Túnel Ulnar/diagnóstico , Dissecação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Estudos Retrospectivos
16.
Comput Sci Appl ; 10408: 328-337, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31032486

RESUMO

A diabatic system of two electronic potential energy surfaces as well as the coupling between them is presented. The system is to be used to study the dynamics of the S1 → S0 internal conversion of azulene and is based on single point calculations of the minima of the two surfaces and a dipole-quadrupole (DQ) diabatization. Based on this, a couple of harmonic diabatic surfaces together with a linear coupling surface have been devised. Some preliminary dynamics results are shown.

17.
J Chem Theory Comput ; 12(11): 5385-5397, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27689448

RESUMO

We describe an integrated computational strategy aimed at providing reliable thermochemical and kinetic information on the formation processes of astrochemical complex organic molecules. The approach involves state-of-the-art quantum-mechanical computations, second-order vibrational perturbation theory, and kinetic models based on capture and transition state theory together with the master equation approach. Notably, tunneling, quantum reflection, and leading anharmonic contributions are accounted for in our model. Formamide has been selected as a case study in view of its interest as a precursor in the abiotic amino acid synthesis. After validation of the level of theory chosen for describing the potential energy surface, we have investigated several pathways of the OH + CH2NH and NH2 + H2CO reaction channels. Our results show that both reaction channels are essentially barrierless (in the sense that all relevant transition states lie below or only marginally above the reactants) and once tunneling is taken into the proper account indicate that the reaction can occur under the low temperature conditions of interstellar environments.

18.
J Chem Theory Comput ; 11(7): 3281-9, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575764

RESUMO

We report in the present paper a comprehensive investigation of representative Pt(II) and Ir(III) complexes with special reference to their one-photon absorption spectra employing methods rooted in density functional theory and its time dependent extension. We have compared nine different functionals ranging from generalized gradient approximation (GGA) to global or range-separated hybrids, and two different basis sets, including pseudopotentials for 4 iridium and 7 platinum complexes. It turns out that hybrid functionals with the same exchange part give comparable results irrespective of the specific correlation functional (i.e., B3LYP is very close to B3PW91 and PBE0 is very close to MPW1PW91). More recent functionals, such as CAM-B3LYP and M06-2X, overestimate excitation energies, whereas local functionals (BP86 -GGA-, M06-L -Meta GGA-) strongly underestimate transition energies with respect to experimental results. As expected, basis set effects are weak, and the use of a triple-ζ polarized (def2-TZVP) basis set does not significantly improve the computed excitation energies with respect to a classical double-ζ basis set (LANL2DZ) augmented by polarization functions, but it significantly raises the computational effort.


Assuntos
Irídio/química , Compostos Organometálicos/química , Platina/química , Teoria Quântica , Estrutura Molecular , Fatores de Tempo
19.
J Chem Theory Comput ; 11(3): 1165-71, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26579765

RESUMO

Herein we report a full thermodynamic and vibrational investigation of C-cyanomethanimine isomers rooted into the Density Functional Theory (DFT) and the second-order vibrational perturbation theory (VPT2). We show that an anharmonic treatment affects dramatically the vibrational behavior of the molecules, especially thanks to the inclusion of interaction terms between the various modes. Furthermore, the equilibrium constant between the isomers, as well as the rate constant, have been obtained at both harmonic and anharmonic levels showing, as expected, slight but non-negligible differences. To support our investigation, dispersion effects have been employed.


Assuntos
Iminas/química , Teoria Quântica , Termodinâmica , Cinética , Espectrofotometria Infravermelho , Vibração
20.
J Chem Theory Comput ; 10(10): 4565-73, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26588150

RESUMO

Density functional theory calculations of infrared spectra at harmonic and anharmonic levels of theory have been carried out in order to define a reliable yet feasible strategy to perform accurate computations on metal complexes starting from metallocenes. We present different possibilities to compute with unprecedented accuracy either the ligand vibrations or vibrations where the metal atom is involved or even to obtain the entire spectrum without invoking any scaling factor. Anharmonic calculations employing second-order vibrational perturbation theory provide very good results when performed using the B3PW91 hybrid functional associated with an extended basis set and are able to reproduce quantitatively the entire spectrum of ferrocene, including the presence of overtones at ∼1700 cm(-1). Furthermore, our results confirm that B3LYP is the best functional to reproduce ligand vibrations, but, unfortunately, it provides unreliable results for vibrations involving the metal atom. Conversely, the PBE0 functional gives accurate results for metal-ligand vibrational frequencies, but it is quite far from the experiment for intraligand ones.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa