Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nucleic Acids Res ; 52(8): 4723-4738, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587192

RESUMO

Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.


Assuntos
Bacteriófagos , Lactococcus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/genética , Cristalografia por Raios X , Lactococcus/virologia , Lactococcus/genética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Relação Estrutura-Atividade
2.
Nucleic Acids Res ; 51(3): 1409-1423, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36124719

RESUMO

The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.


Assuntos
Anexina A2 , Anexina A2/metabolismo , Ligação Proteica/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , DNA/metabolismo , Proteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Enxofre/metabolismo
4.
Nucleic Acids Res ; 50(17): 10026-10040, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107766

RESUMO

Abortive infection (Abi) is a bacterial antiphage defense strategy involving suicide of the infected cell. Some Abi pathways involve polymerases that are related to reverse transcriptases. They are unique in the way they combine the ability to synthesize DNA in a template-independent manner with protein priming. Here, we report crystal and cryo-electron microscopy structures of two Abi polymerases: AbiK and Abi-P2. Both proteins adopt a bilobal structure with an RT-like domain that comprises palm and fingers subdomains and a unique helical domain. AbiK and Abi-P2 adopt a hexameric and trimeric configuration, respectively, which is unprecedented for reverse transcriptases. Biochemical experiments showed that the formation of these oligomers is required for the DNA polymerization activity. The structure of the AbiK-DNA covalent adduct visualized interactions between the 3' end of DNA and the active site and covalent attachment of the 5' end of DNA to a tyrosine residue used for protein priming. Our data reveal a structural basis of the mechanism of highly unusual template-independent protein-priming polymerases.


Assuntos
DNA , DNA Polimerase Dirigida por RNA , Sequência de Aminoácidos , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , DNA Polimerase Dirigida por RNA/metabolismo , Tirosina
5.
J Virol ; 95(18): e0084821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232702

RESUMO

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT-dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.


Assuntos
DNA/metabolismo , DNA Polimerase Dirigida por RNA/química , RNA/metabolismo , Ribonuclease H/química , Spumavirus/enzimologia , Proteases Virais/química , Proteínas Virais/química , Microscopia Crioeletrônica , DNA/química , Conformação Proteica , RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Ribonuclease H/metabolismo , Proteases Virais/metabolismo , Proteínas Virais/metabolismo
6.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919556

RESUMO

Mechanochemical and in-solution synthesis of caffeine complexes with α-, ß-, and γ-cyclodextrins was optimized. It was found that short-duration, low-energy cogrinding, and evaporation (instead of freeze-drying) are effective methods for the formation and isolation of these complexes. The products obtained, their pure components, and their mixtures were examined by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), FT-IR and Raman spectroscopy. Moreover, molecular modeling provided an improved understanding of the association process between the guest and host molecules in these complexes. The complexes were found to exhibit high toxicity in zebrafish (Danio rerio) embryos, in contrast to pure caffeine and cyclodextrins at the same molar concentrations. HPLC measurements of the caffeine levels in zebrafish embryos showed that the observed cytotoxicity is not caused by an increased caffeine concentration in the body of the organism, as the concentrations are similar regardless of the administered caffeine form. Therefore, the observed high toxicity could be the result of the synergistic effect of caffeine and cyclodextrins.


Assuntos
Cafeína/química , Ciclodextrinas/química , Animais , Cafeína/farmacologia , Varredura Diferencial de Calorimetria , Ciclodextrinas/farmacologia , Sinergismo Farmacológico , Embrião não Mamífero/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X , Peixe-Zebra
7.
J Biol Chem ; 293(1): 191-202, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29122886

RESUMO

HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.


Assuntos
Primers do DNA/biossíntese , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/fisiologia , Sequência de Bases , Cristalografia por Raios X/métodos , Primers do DNA/química , DNA Viral , HIV-1/genética , Conformação de Ácido Nucleico , Ácidos Nucleicos , Poli A , Poli U , Polinucleotídeos , Purinas/química , RNA Viral/química , Ribonuclease H/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1864(5): 797-805, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28257821

RESUMO

OCTN2 (SLC22A5) is an organic cation/carnitine transporter belonging to the solute carrier transporters (SLC) family. OCTN2 is ubiquitously expressed and its presence was shown in various brain cells, including the endothelial cells forming blood-brain barrier, where it was mainly detected at abluminal membrane and in proximity of tight junctions (TJ). Since OCTN2 contains a PDZ-binding domain, the present study was focused on a possible role of transporter interaction with a TJ-associated protein ZO-1, containing PDZ domains and detected in rat Octn2 proteome. We showed previously that activation of protein kinase C (PKC) in rat astrocytes regulates Octn2 surface presence and activity. Regulation of a wild type Octn2 and its deletion mutant without a PDZ binding motif were studied in heterologous expression system in HEK293 cells. Plasma membrane presence of overexpressed Octn2 did not depend on either PKC activation or presence of PDZ-binding motif, anyhow, as assayed in proximity ligation assay, the truncation of PDZ binding motif resulted in a strongly diminished Octn2/ZO-1 interaction and in a decreased transporter activity. The same effects on Octn2 activity were detected upon PKC activation, what correlated with ZO-1 phosphorylation. It is postulated that ZO-1, when not phosphorylated by PKC, keeps Octn2 in an active state, while elimination of this binding in ΔPDZ mutant or after ZO-1 phosphorylation leads to diminution of Octn2 activity.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteína Quinase C/metabolismo , Proteína da Zônula de Oclusão-1/fisiologia , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Fosforilação , Ligação Proteica , Transdução de Sinais , Membro 5 da Família 22 de Carreadores de Soluto
9.
Nucleic Acids Res ; 43(5): 2864-73, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25634891

RESUMO

Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Ribonuclease III/química , Ribonuclease III/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Nucleic Acids Res ; 42(13): 8745-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24966351

RESUMO

R.DpnI consists of N-terminal catalytic and C-terminal winged helix domains that are separately specific for the Gm6ATC sequences in Dam-methylated DNA. Here we present a crystal structure of R.DpnI with oligoduplexes bound to the catalytic and winged helix domains and identify the catalytic domain residues that are involved in interactions with the substrate methyl groups. We show that these methyl groups in the Gm6ATC target sequence are positioned very close to each other. We further show that the presence of the two methyl groups requires a deviation from B-DNA conformation to avoid steric conflict. The methylation compatible DNA conformation is complementary with binding sites of both R.DpnI domains. This indirect readout of methylation adds to the specificity mediated by direct favorable interactions with the methyl groups and solvation/desolvation effects. We also present hydrogen/deuterium exchange data that support 'crosstalk' between the two domains in the identification of methylated DNA, which should further enhance R.DpnI methylation specificity.


Assuntos
Metilação de DNA , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Adenina/análogos & derivados , Adenina/química , Pareamento de Bases , Domínio Catalítico , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
11.
Postepy Biochem ; 62(3): 303-314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132485

RESUMO

Ribonucleases are nucleolytic enzymes that commonly occur in living organisms and act by cleaving RNA molecules. These enzymes are involved in basic cellular processes, including the RNA maturation that accompanies the formation of functional RNAs, as well as RNA degradation that enables removal of defective or dangerous molecules or ones that have already fulfilled their cellular functions. RNA degradation is also one of the main processes that determine the amount of transcripts in the cell and thus it makes an important element of the gene expression regulation system. Ribonucleases can catalyse reactions involving RNA molecules containing specific sequences, structures or sequences within a specific structure, they can also cut RNAs non-specifically. In this article, we discuss ribonucleases cleaving the phosphodiester bond inside RNA molecules within or close to particular sequences. We also present examples of protein engineering of ribonucleases towards the development of molecular tools for sequence-specific cleavage of RNA.


Assuntos
Endorribonucleases/metabolismo , Animais , Bactérias/enzimologia , Eucariotos/enzimologia , Humanos , RNA/metabolismo , Estabilidade de RNA , Vírus/enzimologia
12.
Nucleic Acids Res ; 40(17): 8579-92, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22735699

RESUMO

R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5'-GCNNNNNNNGC-3' (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5'-GCCNNNNNGGC-3'. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5'-GCCNNNNNGGC-3' sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Engenharia de Proteínas , Alinhamento de Sequência , Especificidade por Substrato
13.
Nucleic Acids Res ; 40(15): 7563-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610857

RESUMO

DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N(6)-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Adenina/análogos & derivados , Adenina/química , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/classificação , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Especificidade por Substrato
14.
Nucleic Acids Res ; 40(22): 11563-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042681

RESUMO

Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA-RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA-RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA-RNA hybrids. The optimization of the fusion enzyme's specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation.


Assuntos
Clivagem do RNA , Ribonuclease H/genética , Ribonuclease H/metabolismo , Dedos de Zinco/genética , Domínio Catalítico , DNA/metabolismo , Modelos Moleculares , Engenharia de Proteínas , RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/química , Especificidade por Substrato
15.
Nucleic Acids Res ; 40(16): 8163-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718974

RESUMO

Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence-structure-function relationships in ExoVII.


Assuntos
Enzimas Reparadoras do DNA/química , Proteínas de Escherichia coli/química , Exodesoxirribonucleases/química , Sequência de Aminoácidos , Sequência de Bases , Enzimas Reparadoras do DNA/classificação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/classificação , Exodesoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Alinhamento de Sequência , Relação Estrutura-Atividade
16.
Nat Struct Mol Biol ; 30(5): 650-660, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081315

RESUMO

In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Recombinação Homóloga , Bactérias/metabolismo , DNA de Cadeia Simples , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Reparo do DNA
17.
Mol Cancer Ther ; 22(7): 807-817, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939275

RESUMO

Pharmacologic inhibition of the controlling immunity pathway enzymes arginases 1 and 2 (ARG1 and ARG2) is a promising strategy for cancer immunotherapy. Here, we report the discovery and development of OATD-02, an orally bioavailable, potent arginases inhibitor. The unique pharmacologic properties of OATD-02 are evidenced by targeting intracellular ARG1 and ARG2, as well as long drug-target residence time, moderate to high volume of distribution, and low clearance, which may jointly provide a weapon against arginase-related tumor immunosuppression and ARG2-dependent tumor cell growth. OATD-02 monotherapy had an antitumor effect in multiple tumor models and enhanced an efficacy of the other immunomodulators. Completed nonclinical studies and human pharmacokinetic predictions indicate a feasible therapeutic window and allow for proposing a dose range for the first-in-human clinical study in patients with cancer. SIGNIFICANCE: We have developed an orally available, small-molecule intracellular arginase 1 and 2 inhibitor as a potential enhancer in cancer immunotherapy. Because of its favorable pharmacologic properties shown in nonclinical studies, OATD-02 abolishes tumor immunosuppression induced by both arginases, making it a promising drug candidate entering clinical trials.


Assuntos
Arginase , Neoplasias , Humanos , Arginase/metabolismo , Neoplasias/tratamento farmacológico , Imunoterapia
18.
Biochim Biophys Acta ; 1813(10): 1845-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21763357

RESUMO

In previous studies we have demonstrated that prion protein (PrP) interacts with tubulin and disrupts microtubular cytoskeleton by inducing tubulin oligomerization. These observations may explain the molecular mechanism of toxicity of cytoplasmic PrP in transmissible spongiform encephalopathies (TSEs). Here, we check whether microtubule associated proteins (MAPs) that regulate microtubule stability, influence the PrP-induced oligomerization of tubulin. We show that tubulin preparations depleted of MAPs are more prone to oligomerization by PrP than those containing traces of MAPs. Tau protein, a major neuronal member of the MAPs family, reduces the effect of PrP. Importantly, phosphorylation of Tau abolishes its ability to affect the PrP-induced oligomerization of tubulin. We propose that the binding of Tau stabilizes tubulin in a conformation less susceptible to oligomerization by PrP. Since elevated phosphorylation of Tau leading to a loss of its function is observed in Alzheimer disease and related tauopathies, our results point at a possible molecular link between these neurodegenerative disorders and TSEs.


Assuntos
Príons/farmacologia , Multimerização Proteica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Proteínas tau/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Suínos , Moduladores de Tubulina/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas tau/fisiologia
19.
Apoptosis ; 17(9): 950-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696202

RESUMO

Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by the expression of BCR-ABL. Loss of p53 has not been implicated as important for the development of CML. Mutations in p53 protein are infrequent, however they correlate with the disease progression. The absence of p53 mutations does not exclude the possibility that other dysfunctions play an important role in CML pathology. Acetylation represents a very potent posttranslational mechanism regulating p53 stability, transcriptional activity and localization. In this study we have investigated whether the expression of BCR-ABL could influence the acetylation of p53, specifically at lysine 317/320 (K317/K320), which has been shown to regulate nuclear export and transcription-independent apoptotic activity of p53. We found that BCR-ABL expression increases K317 acetylation of p53 and is able to prevent a drop in acetylation observed upon DNA damage, followed by translocation of p53 to the cytoplasm and by Bax activation. We have shown that this site plays a crucial role in the regulation of p53 localization and p53-dependent, Bax-mediated apoptosis. Our study presents a novel BCR-ABL-dependent mechanism protecting from DNA-damage-induced cell death. It can, in addition to already known mechanisms, explain the resistance to p53-dependent apoptosis observed in CML cells expressing wt p53. We propose that the acetyltransferases regulating the p53 acetylation could be an interesting and potent target for therapeutic intervention.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Linhagem Celular , Sobrevivência Celular , Citoplasma/metabolismo , Ativação Enzimática , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Mitocôndrias/metabolismo , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Proteína X Associada a bcl-2/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
20.
Biochem Biophys Res Commun ; 422(1): 64-9, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22561015

RESUMO

ATB(0,+) (SLC6A14) is a transporter specific towards neutral and cationic amino acids, known to be up-regulated in malignant tumor cells. We cloned cDNA for rATB(0,+) and expressed it in HEK 293 cells. The ATB(0,+) over-expression correlated with increased l-leucine transport, stimulated by protein kinase C (PKC) activator and attenuated by PKC inhibitors. Transport stimulation was correlated with phosphorylation on serine moiety of the transporter and its augmented plasma membrane presence. Immunoprecipitation experiments demonstrated ATB(0,+) interaction with PKCα, but not with other classical or novel PKC isoforms. Immunocytochemistry experiments showed a transfer of PKCα to plasma membrane upon phorbol ester activation and co-localization with ATB(0,+). The observed regulation of ATB(0,+) by PKC correlates with high activity of both proteins reported for cancer cells.


Assuntos
Proteínas de Transporte de Neurotransmissores/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Clonagem Molecular , Células HEK293 , Humanos , Imunoprecipitação , Proteínas de Transporte de Neurotransmissores/genética , Ésteres de Forbol/farmacologia , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa