Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Virol ; 96(6): e0150321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044207

RESUMO

Cancer-causing human papillomavirus (HPV) E6 oncoproteins contain a well-characterized phosphoacceptor site within the PDZ (PSD-95/Dlg/ZO-1) binding motif (PBM) at the C terminus of the protein. Previous studies have shown that the threonine or serine residue in the E6 PBM is subject to phosphorylation by several stress-responsive cellular kinases upon the induction of DNA damage in cervical cancer-derived cells. However, there is little information about the regulation of E6 phosphorylation in the absence of DNA damage and whether there may be other pathways by which E6 is phosphorylated. In this study, we demonstrate that loss of E6AP results in a dramatic increase in the levels of phosphorylated E6 (pE6) despite the expected overall reduction in total E6 protein levels. Furthermore, phosphorylation of E6 requires transcriptionally active p53 and occurs in a manner that is dependent upon DNA-dependent protein kinase (DNA PK). These results identify a novel feedback loop, where loss of E6AP results in upregulation of p53, leading to increased levels of E6 phosphorylation, which in turn correlates with increased association with 14-3-3 and inhibition of p53 transcriptional activity. IMPORTANCE This study demonstrates that the knockdown of E6AP from cervical cancer-derived cells leads to an increase in phosphorylation of the E6 oncoprotein. We show that this phosphorylation of E6 requires p53 transcriptional activity and the enzyme DNA PK. This study therefore defines a feedback loop whereby activation of p53 can induce phosphorylation of E6 and which in turn can inhibit p53 transcriptional activity independently of E6's ability to target p53 for degradation.


Assuntos
Papillomavirus Humano 18 , Ubiquitina-Proteína Ligases , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Feminino , Papillomavirus Humano 18/metabolismo , Humanos , Fosforilação , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Neoplasias do Colo do Útero/virologia
2.
PLoS Comput Biol ; 16(11): e1008354, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180766

RESUMO

Systematic knockout studies in mice have shown that a large fraction of the gene replacements show no lethal or other overt phenotypes. This has led to the development of more refined analysis schemes, including physiological, behavioral, developmental and cytological tests. However, transcriptomic analyses have not yet been systematically evaluated for non-lethal knockouts. We conducted a power analysis to determine the experimental conditions under which even small changes in transcript levels can be reliably traced. We have applied this to two gene disruption lines of genes for which no function was known so far. Dedicated phenotyping tests informed by the tissues and stages of highest expression of the two genes show small effects on the tested phenotypes. For the transcriptome analysis of these stages and tissues, we used a prior power analysis to determine the number of biological replicates and the sequencing depth. We find that under these conditions, the knockouts have a significant impact on the transcriptional networks, with thousands of genes showing small transcriptional changes. GO analysis suggests that A930004D18Rik is involved in developmental processes through contributing to protein complexes, and A830005F24Rik in extracellular matrix functions. Subsampling analysis of the data reveals that the increase in the number of biological replicates was more important that increasing the sequencing depth to arrive at these results. Hence, our proof-of-principle experiment suggests that transcriptomic analysis is indeed an option to study gene functions of genes with weak or no traceable phenotypic effects and it provides the boundary conditions under which this is possible.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Estudos de Associação Genética/métodos , Animais , Comportamento Animal , Biologia Computacional , Extremidades/anatomia & histologia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Estudos de Associação Genética/estatística & dados numéricos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fenótipo , Estudo de Prova de Conceito , RNA-Seq/estatística & dados numéricos , Transcriptoma
3.
Commun Biol ; 5(1): 314, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383280

RESUMO

TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43's performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Humanos , Camundongos , Músculos/metabolismo , Splicing de RNA
4.
Elife ; 82019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31436535

RESUMO

The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation.


Assuntos
Intervalo entre Nascimentos , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oviductos/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Camundongos , Gravidez
5.
Mol Ecol Resour ; 18(4): 908-921, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29520982

RESUMO

Two subspecies of the house mouse, Mus musculus domesticus and Mus musculus musculus, meet in a narrow contact zone across Europe. Mice in the hybrid zone are highly admixed, representing the full range of mixed ancestry from the two subspecies. Given the distinct morphologies of these subspecies, these natural hybrids can be used for genomewide association mapping at sufficiently high resolution to directly infer candidate genes. We focus here on limb bone length differences, which is of special interest for understanding the evolution of developmentally correlated traits. We used 172 first-generation descendants of wild-caught mice from the hybrid zone to measure the length of stylopod (humerus/femur), zeugopod (ulna/tibia) and autopod (metacarpal/metatarsal) elements in skeletal CT scans. We find phenotypic covariation between limb elements in the hybrids similar to patterns previously described in Mus musculus domesticus inbred strains, suggesting that the hybrid genotypes do not influence the covariation pattern in a major way. Mapping was performed using 143,592 SNPs and identified several genomic regions associated with length differences in each bone. Bone length was found to be highly polygenic. None of the candidate regions include the canonical genes known to control embryonic limb development. Instead, we are able to identify candidate genes with known roles in osteoblast differentiation and bone structure determination, as well as recently evolved genes of, as yet, unknown function.


Assuntos
Hibridização Genética , Camundongos/genética , Animais , Tamanho Corporal/genética , Osso e Ossos/anatomia & histologia , Mapeamento Cromossômico , Estudos de Associação Genética , Camundongos/anatomia & histologia , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa