Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(1): 157-169.e10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35278494

RESUMO

BACKGROUND: Approximately 400 million individuals are infected with hookworms globally. Protective vaccines are needed to prevent reinfections, which often occur after drug treatment in endemic areas. Ideal vaccines are highly efficacious and well tolerated, and do not present risks to patient safety. Peptide vaccines can generate specific, highly protective responses because they focus on minimal antigenic target(s) with a specific immunoprotective mechanism. Necator americanus aspartyl protease 1 (Na-APR-1) is one of the most promising hookworm vaccine antigens. The neutralizing epitope p3 (TSLIAGPKAQVEAIQKYIGAEL), together with universal the TH epitope P25 (KLIPNASLIENCTKAEL), has been used previously to produce peptide vaccines and was found to protect BALB/c mice against rodent hookworm infections, resulting in worm burden reductions of up to 98%. However, because of extensive digestion in the gastrointestinal tract, large oral vaccination doses were necessary to achieve this level of efficacy. OBJECTIVE: We sought to overcome the limitations of oral vaccine delivery and to investigate protective efficacy and immune correlates of protection. Herein, we examined 5 different peptide vaccines following intraperitoneal injection, to compare their efficacy with that of the clinical protein antigen APR-1. METHODS: BALB/c mice were immunized with p3-P25-based antigen that was adjuvanted with (1) lipid core peptide, (2) polymethyl methacrylate, (3) linear polyleucine, and (4) branched polyleucine (BL10), or with (5) CpG/aluminum hydroxide adjuvant (alum)-adjuvanted control and protein-based (6) CpG/alum-adjuvanted Na-APR-1. The mice sera, saliva, and feces were sampled for immune response evaluation. The immunized mice were further challenged via hookworm larvae infection, and protection was evaluated by conducting intestinal hookworm counts. RESULTS: BL10 and lipid core peptide generated the highest serum anti-Na-APR-1 IgG and fecal anti-APR-1 IgG titers, but only BL10 generated significant fecal anti-Na-APR-1 IgA titers. Upon challenge, immunization with CpG/alum-adjuvanted p3-P25, BL10, and lipid core peptide provided the highest worm burden reductions of 75%, 77%, and 59%, respectively, whereas the group immunized with Na-APR-1 had only modest worm reduction of 26%. The relationships between serum anti-Na-APR-1 IgG, fecal anti-Na-APR-1 IgA and IgG, and worm burden reduction were established with R2 values greater than or equal to 0.9, and the crucial role of both anti-Na-APR-1 IgG and IgA responses was identified. CONCLUSIONS: We demonstrated for the first time that p3-based vaccine candidates are safer and can deliver higher protection against hookworm infection compared with the clinical vaccine candidate, Na-APR-1.


Assuntos
Infecções por Uncinaria , Vacinas de Subunidades Antigênicas , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Epitopos , Infecções por Uncinaria/prevenção & controle , Imunoglobulina A , Imunoglobulina G , Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Necator americanus , Vacinas de Subunidades Antigênicas/efeitos adversos
2.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903494

RESUMO

Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.


Assuntos
Circovirus , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Anticorpos Antivirais , Doenças dos Suínos/prevenção & controle , Peptídeos , Epitopos , Adjuvantes Imunológicos
3.
J Allergy Clin Immunol ; 148(6): 1394-1419.e6, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34872650

RESUMO

Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.


Assuntos
Antígenos de Helmintos/imunologia , Infecções por Uncinaria/imunologia , Intestinos/imunologia , Necatoríase/imunologia , Vacinas/imunologia , Ancylostomatoidea/imunologia , Animais , Humanos , Imunidade nas Mucosas , Vacinas de Subunidades Antigênicas
4.
Drug Dev Res ; 83(6): 1251-1256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751566

RESUMO

COVID-19 pandemic has been the deadliest infectious disease outbreak since Spanish flu. The emerging variant lineages, decay of neutralizing antibodies, and occur of reinfections require the development of highly protective and safe vaccines. As currently approved COVID-19 vaccines that utilize virus-related genetic material are less than ideal, other vaccine types have been also widely investigated. Among them, peptide-based vaccines hold great promise in countering COVID-19 as they may overcome most of the shortcomings of RNA/DNA and protein vaccines. Two basic types of potential peptide vaccines can be developed. The first type are those which rely on cytotoxic T-cell (CTL) responses to kill infected host cells and stop the replication via employing CTL-epitopes as vaccine antigens. The second type of peptide vaccines are those that rely on B-cell peptide epitopes to trigger humoral response via generating SARS-CoV-2-specific antibodies to neutralize and/or opsonize the virus. We propose that combining both cellular and humoral immune responses would be highly protective. Here we discuss opportunities and challenges in the development of an effective and safe peptide-based vaccine against COVID-19.


Assuntos
COVID-19 , Influenza Pandêmica, 1918-1919 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos de Linfócito B , História do Século XX , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Vacinas de Subunidades Antigênicas
5.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684571

RESUMO

It is beyond doubt that short peptides hold significant promise in bio-medicine, as the most versatile molecules, both structurally and functionally [...].


Assuntos
Medicina , Peptídeos , Peptídeos/química
6.
Bioconjug Chem ; 32(11): 2307-2317, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34379392

RESUMO

Peptide-based vaccines are composed of small, defined, antigenic peptide epitopes. They are designed to induce well-controlled immune responses. Multiple epitopes are often employed in these vaccines to cover strain variability of a pathogen. However, peptide epitopes cannot stimulate adequate immune responses on their own and require an adjuvant (immune stimulant) and/or delivery system. Here, we designed and synthesized a multiepitope vaccine candidate against Group A Streptococcus (GAS) composed of several B-cell epitopes (J8, PL1, and 88/30) derived from GAS M-protein, universal PADRE T-helper cell epitope, and a polyleucine self-adjuvanting unit. The vaccine components were conjugated together (using mercapto-maleimide and azide-alkyne Huisgen cycloaddition reactions) or delivered as a mixture. The conjugated multiepitope vaccine candidate self-assembled into small nanoparticles and chain-like aggregated nanoparticles (CLANs) that were able to induce the production of J8-, PL1-, and 88/30-specific antibodies in mice. The multiepitope conjugate and the physical mixture of conjugates bearing the individual epitopes produced similar nanoparticles and induced comparable immune responses. Hence, simple physical mixing can replace complex chemical conjugation to produce multiepitope nanoparticles with equivalent morphology and immunological efficacy. This greatly simplifies vaccine production.


Assuntos
Streptococcus pyogenes
7.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467522

RESUMO

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Aminoácidos/química , Anti-Infecciosos/química , Antivirais/química , Simulação por Computador , Cosmecêuticos/química , Cosmecêuticos/uso terapêutico , Suplementos Nutricionais , Técnicas de Transferência de Genes , Humanos , Lactoferrina/química , Bicamadas Lipídicas , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Peptídeos/administração & dosagem , Células-Tronco , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacologia , Tratamento Farmacológico da COVID-19
8.
J Infect Dis ; 221(6): 934-942, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621864

RESUMO

BACKGROUND: The human hookworm, Necator americanus, is a parasite that infects almost half a billion people worldwide. Although treatment is available, vaccination is favorable to combat the spread of this parasite due to its wide distribution and continuous reinfection cycle in endemic communities. METHODS: We have designed a lipopeptide oral delivery system using a B-cell epitope derived from the aspartic protease Na-APR-1 from N americanus, attached to a T-helper epitope. Lipopeptides were self-assembled into nanoparticles or entrapped in liposomes that were electrostatically coated with alginate and trimethyl chitosan polymer shields. The adjuvant-free vaccine candidates were orally administered to mice and generated a humoral immune response against both peptide antigen, and the parent protein in the hookworm gut. RESULTS: The vaccine candidates were evaluated in a rodent hookworm challenge model, resulting in up to 98% and 99% decreases in mean intestinal worm and egg burdens in immunized mice, respectively. CONCLUSIONS: Lipopeptide survived the gastrointestinal conditions, induced humoral immune responses and drived protection against parasite challenge infection.


Assuntos
Infecções por Uncinaria/prevenção & controle , Lipopeptídeos/imunologia , Vacinas/imunologia , Animais , Infecções por Uncinaria/parasitologia , Imunidade Humoral , Lipopeptídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Necator americanus/metabolismo , Vacinação
9.
Bioorg Med Chem ; 28(24): 115823, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120079

RESUMO

In order to improve the immunogenicity of peptide-based vaccines against group A Streptococcus (GAS), lipid moieties (C16 lipoamino acid and cholic acid) were conjugated with peptide antigen (P25-J8) and further modified with α-poly(glutamic acid) (α-PGA). Thus, positively charged lipopeptide vaccine candidates LCP-1 (P25-K(J8)-SS-C16-C16) and LCP-2 (P25-K(J8)-SS-K(cholic acid)) were synthesized. Negatively charged LCP-3 (P25-K(PGA-J8)-SS-K(cholic acid)) was also produced by attaching α-PGA to the J8 N-terminus of LCP-2. Polyelectrolyte complex (PEC) nanoparticles were formulated with heparin and/or trimethyl chitosan (TMC) for delivery of the lipopeptide vaccine candidates. The ability of the antigen-loaded nanoparticles to induce humoral immune responses was examined in outbred female Swiss mice following intranasal immunization. The antibodies produced were opsonic against all clinical GAS isolates tested.


Assuntos
Lipopeptídeos/imunologia , Streptococcus pyogenes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Homólogo 5 da Proteína Cromobox , Feminino , Humanos , Imunidade Humoral , Lipopeptídeos/administração & dosagem , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Camundongos , Nanopartículas/química , Polieletrólitos/química , Ácido Poliglutâmico/química , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacologia
10.
Bioorg Med Chem ; 27(14): 3082-3088, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176567

RESUMO

Short peptides derived from virulent pathogen proteins are promising antigens for the development of vaccines against infectious diseases. However, in order to mimic the danger signals associated with natural infection and stimulate an adaptive immune response, peptide antigens must be co-delivered with immune adjuvants. In this study, a group A streptococcus (GAS) M-protein derived B-cell epitope: J8, and universal T-helper epitope P25 containing peptides, were chemically coupled with different anionic amino acid-based polymers. The poly(anionic amino acid)-peptide antigen conjugates were mixed with trimethyl chitosan (TMC) to produce self-adjuvanting nanoparticulate vaccine candidates. TMC from two different sources were used to analyse their effect on immunogenicity. The nanoparticles produced from a peptide modified with 10 residues of polyglutamic acid and fungal TMC (NP5) stimulated production of the highest levels of serum antibodies in outbred mice. These antibodies were opsonic against all clinical GAS isolates tested.


Assuntos
Aminoácidos/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Peptídeos
11.
Nanomedicine ; 13(8): 2463-2474, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887213

RESUMO

Despite the broad knowledge about the pathogenicity of Streptococcus pyogenes there is still a controversy about the correlate of protection in GAS infections. We aimed in further improving the immune responses stimulated against GAS comparing different vaccine formulations including bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and BPPCysMPEG, a derivative of the macrophage-activating lipopeptide (MALP-2), as adjuvants, respectively, to be administered with and without the universal T helper cell epitope P25 along with the optimized B cell epitope J14 of the M protein and B and T cell epitopes of SfbI. Lipopeptide based nano carrier systems (LCP) were used for efficient antigen delivery across the mucosal barrier. The stimulated immune responses were efficient in protecting mice against a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain. Moreover, combination of the LCP based peptide vaccine with c-di-AMP allowed reduction of antigen dose at the same time maintaining vaccine efficacy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/uso terapêutico , Streptococcus pyogenes/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Formação de Anticorpos , Fosfatos de Dinucleosídeos/administração & dosagem , Fosfatos de Dinucleosídeos/uso terapêutico , Epitopos/administração & dosagem , Epitopos/uso terapêutico , Feminino , Lipopeptídeos/administração & dosagem , Lipopeptídeos/uso terapêutico , Camundongos Endogâmicos BALB C , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem
12.
Eur Polym J ; 93: 670-681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32226094

RESUMO

Peptide based-vaccines are becoming one of the most widely investigated prophylactic and therapeutic health care interventions against a variety of diseases, including cancer. However, the lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery system was recently shown to overcome this obstacle. Nanostructures are often formed from antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-assembly phenomenon. This review describes the application of self-assembly process for the production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate humoral and cellular immune responses.

13.
Bioorg Med Chem ; 24(18): 4372-4380, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475535

RESUMO

Immunotherapy is one of the most promising strategies for the treatment of cancer. Human papillomavirus (HPV) is responsible for virtually all cases of cervical cancer. The main purpose of a therapeutic HPV vaccine is to stimulate CD8(+) cytotoxic T lymphocytes (CTLs) that can eradicate HPV infected cells. HPV oncoproteins E6 and E7 are continuously expressed and are essential for maintaining the growth of HPV-associated tumor cells. We designed polymer-based multi-antigenic formulations/constructs that were comprised of the E6 and E7 peptide epitopes. We developed an N-terminus-based epitope conjugation to conjugate two unprotected peptides to poly tert-butyl acrylate. This method allowed for the incorporation of the two antigens into a polymeric dendrimer in a strictly equimolar ratio. The most effective formulations eliminated tumors in up to 50% of treated mice. Tumor recurrence was not observed up to 3months post initial challenge.


Assuntos
Antígenos/química , Vacinas contra Papillomavirus/uso terapêutico , Peptídeos/química , Polímeros/química , Neoplasias do Colo do Útero/prevenção & controle , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Epitopos/química , Epitopos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/imunologia , Espectrometria de Massas por Ionização por Electrospray
14.
Bioorg Med Chem ; 24(14): 3095-101, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27246859

RESUMO

Infection with Group A Streptococcus (GAS) can result in a range of different illnesses, some of which are fatal. Currently, our efforts to develop a vaccine against GAS focuses on the lipid core peptide (LCP) system, a subunit vaccine containing a lipoamino acid (LAA) moiety which allows the stimulation of systemic antibody activity. In the present study, a peptide (J14) representing the B-cell epitope from the GAS M protein was incorporated alongside a universal T-helper epitope (P25) in four LCP constructs of different spatial orientation or LAA lengths. Through structure-activity studies, it was discovered that while the alteration of the LCP orientation had a weaker effect on immunostimulation, increasing the LAA side chain length within the construct increased antibody responses in murine models. Furthermore, the mice immunised with the lead LCP construct were also able to maintain antibody activity throughout the course of five months. These findings highlight the importance of LAA moieties in the development of intranasal peptide vaccines and confirmed that its side chain length has an effect on the immunogenicity of the structure.


Assuntos
Vacinas Bacterianas/química , Vacinas Bacterianas/farmacologia , Lipídeos/química , Peptídeos/química , Streptococcus pyogenes/imunologia , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Camundongos , Microscopia Eletrônica de Transmissão , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 24(10): 2235-41, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27048775

RESUMO

The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Linhagem Celular , Desenho de Fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana
16.
Bioorg Med Chem Lett ; 25(23): 5570-5, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26514746

RESUMO

Human papillomaviruses (HPVs) are associated with various cancers, with HPV16 linked to more than half of cervical cancer cases. Vaccines to prevent HPV infection and cancer development have proven effective, but are not useful in individuals with prior HPV exposure. Treatment vaccines to eradicate or control HPV-associated lesions are therefore desirable for these patients. Herein we describe the development of a process to enable the production of semisynthetic vaccines based on the site-specific attachment of synthetic bacterial lipid analogs (e.g., Pam2Cys) to a non-oncogenic mutant HPV16 E7 protein to generate molecularly defined vaccines. Many cytotoxic lymphocyte (CTL) epitopes from E7 are delivered by this approach; potentially ensuring that large numbers of immunized individuals can generate CTLs to clear HPV infected cells. Delivery of this construct reduced the growth of HPV16-associated tumors in a TC1 mouse model, the effects of which were better than the potent CTL epitope HPV16 E7(44-57) administered with Montanide ISA51 adjuvant.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Lipopeptídeos/química , Neoplasias/tratamento farmacológico , Proteínas E7 de Papillomavirus/efeitos dos fármacos , Infecções por Papillomavirus/terapia , Proteínas Recombinantes , Adjuvantes Imunológicos/síntese química , Sequência de Aminoácidos , Animais , Vacinas Anticâncer/síntese química , Técnicas de Química Sintética , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Lipopeptídeos/síntese química , Lipopeptídeos/genética , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
Bioorg Med Chem ; 23(6): 1307-12, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25684420

RESUMO

Schistosomiasis is caused by the infection from Schistosoma species. Among these, Schistosoma mansoni is one of the major species that infects millions of people worldwide. The use of praziquantel is effective in clearing the infestation but treatment of a large and widespread population in endemic areas is unsustainable. Thus, synergistic approach of using drug and vaccination can serve as an alternative to the current treatment. In this study, we have developed vaccine candidates that composed of three components: a B-cell epitope derived from S. mansoni cathepsin D protein (Sm-CatD) flanked by GCN4 helix promoting peptide; a promiscuous T-helper epitope (P25); and a lipid core peptide system, in attempt to develop self-adjuvanting vaccine candidates against the schistosome. Physicochemical properties of the vaccine candidates were analysed and antibodies to each construct were raised in BALB/c mice. The vaccine candidates were able to self-assemble into particles that induced high titres of IgG without the use of additional adjuvant. The antibody levels were comparable to that induced by peptide formulated with strong but toxic Freund's adjuvant. The integration of a GCN4 sequence induced the helical conformation of the epitope, while the addition of the T helper peptide was very effective in inducing consistent IgG-specific antibodies response amongst mice. These findings are particularly encouraging for the development of efficient and immunogenic vaccine against schistosomiasis.


Assuntos
Catepsina D/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Schistosoma mansoni/imunologia , Vacinas/imunologia , Animais , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Estrutura Molecular , Esquistossomose/imunologia , Esquistossomose/prevenção & controle , Relação Estrutura-Atividade , Vacinas/química , Vacinas/metabolismo
18.
J Liposome Res ; 25(4): 287-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25586718

RESUMO

Many peptides and proteins, although potentially useful for the treatment of various diseases, are hindered in their clinical use by poor oral absorption and rapid enzymatic degradation. One of the available solutions to these problems is to increase the lipophilicity by conjugating the peptides to lipophilic moieties, making them more able to cross the biomembranes by passive transport. Occludin is a 65-kDa integral plasma-membrane protein located at the tight junctions. This protein and the peptide derived from it have potential clinical application for drug delivery. Peptide OP90-103 (1) is a fragment of occludin that shows a very poor oral bioavailability and is highly susceptible to enzymatic degradation. The conjugation of 1 with two lipoamino acid (LAA) moieties has been shown to enhance its lipophilicity and bioavailability, as well as its enzymatic stability. The purpose of this study was to evaluate the possibility of encapsulating fluorescein modified lipidated OP90-103 (2), in unilamellar- (LUV) and multilamellar liposomes (MLV), which have a different composition and surface charge and are produced by different methods. The cell internalization of the carrier systems was evaluated in vitro.


Assuntos
Portadores de Fármacos/química , Ocludina/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Estrutura Molecular , Ocludina/síntese química , Peptídeos/síntese química , Peptídeos/química , Células Tumorais Cultivadas
19.
Bioorg Med Chem ; 22(22): 6401-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25438764

RESUMO

Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.


Assuntos
Adjuvantes Imunológicos/química , Lipopeptídeos/química , Streptococcus pyogenes/metabolismo , Vacinas Sintéticas/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Dicroísmo Circular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Feminino , Imunoglobulina G/análise , Lipopeptídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Vacinas Sintéticas/imunologia
20.
Methods Mol Biol ; 2821: 205-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997491

RESUMO

Enzyme-linked immunosorbent assay (ELISA) detects qualitatively and quantitatively the presence of antibodies or antigens in a sample. Due to its simplicity, high sensitivity, and user-friendliness, the test is widely used in laboratory research, clinical diagnoses, and food testing. This chapter describes the indirect semiquantitative ELISA protocol used to monitor antibody levels in animals and analyze the titer levels of specific antibodies against a target antigen in serum and saliva.


Assuntos
Anticorpos , Ensaio de Imunoadsorção Enzimática , Saliva , Ensaio de Imunoadsorção Enzimática/métodos , Saliva/imunologia , Animais , Anticorpos/imunologia , Anticorpos/sangue , Antígenos/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa