Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35094127

RESUMO

A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.


Assuntos
Orientação , Resposta Táctica , Migração Animal , Animais , Campos Magnéticos , Magnetismo , Camundongos , Orientação/fisiologia , Roedores
2.
PLoS One ; 8(8): e73112, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023673

RESUMO

Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.


Assuntos
Magnetismo , Aprendizagem em Labirinto/fisiologia , Orientação/fisiologia , Água , Animais , Cricetinae , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
3.
Learn Behav ; 34(4): 366-73, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17330527

RESUMO

We report evidence for a robust magnetic compass response in C57BL/6J mice. Mice were trained to build their nests in one of four magnetic directions by creating a light gradient along the long axis of a rectangular cage and positioning a nest box at the opposite (dark) end. The mice were then tested overnight in a circular, visually symmetrical arena in one of four magnetic field alignments. The positions of the nests built in the test arena showed strong unimodal orientation in the magnetic direction coinciding with the dark end of the training cage.


Assuntos
Magnetismo , Percepção Espacial , Comportamento Espacial , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa