RESUMO
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.
Assuntos
Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo , Miocárdio/citologia , Organogênese , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas com Domínio T/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS: We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS: Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS: This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Assuntos
Cicatriz , Ventrículos do Coração , Camundongos , Animais , Ventrículos do Coração/patologia , Cicatriz/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fibrose , Fibroblastos/metabolismo , Proliferação de Células , Miocárdio/metabolismoRESUMO
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.
Assuntos
Diabetes Mellitus Experimental , Insuficiência Cardíaca , Sirtuínas , Humanos , Camundongos , Animais , Volume Sistólico/fisiologia , Insuficiência Cardíaca/metabolismo , PPAR gama , Modelos Animais de Doenças , Sirtuínas/genética , LipídeosRESUMO
The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.
Assuntos
Actinina/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Mitocôndrias/metabolismo , Morfogênese , Mutação , Miócitos Cardíacos/patologia , Sarcômeros/patologia , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS: We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS: Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.
Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Placofilinas , Adulto , Animais , Displasia Arritmogênica Ventricular Direita/patologia , Dano ao DNA , Humanos , Peróxido de Hidrogênio , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Oxidantes/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Volume Sistólico , Função Ventricular EsquerdaRESUMO
[Figure: see text].
Assuntos
Antifibróticos/farmacologia , Cardiomegalia/prevenção & controle , Matriz Extracelular , Miocárdio/patologia , Miofibroblastos/efeitos dos fármacos , Piranos/farmacologia , Angiotensina II/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Células NIH 3T3 , Piranos/isolamento & purificação , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/metabolismoRESUMO
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Assuntos
Cardiopatias/etiologia , Pericárdio/crescimento & desenvolvimento , Regeneração , Animais , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Comunicação Parácrina , Pericárdio/citologia , Pericárdio/metabolismo , Pericárdio/fisiologiaRESUMO
Mutations in lysosomal-associated membrane protein 2 (LAMP-2) gene are associated with Danon disease, which often leads to cardiomyopathy/heart failure through poorly defined mechanisms. Here, we identify the LAMP-2 isoform B (LAMP-2B) as required for autophagosome-lysosome fusion in human cardiomyocytes (CMs). Remarkably, LAMP-2B functions independently of syntaxin 17 (STX17), a protein that is essential for autophagosome-lysosome fusion in non-CMs. Instead, LAMP-2B interacts with autophagy related 14 (ATG14) and vesicle-associated membrane protein 8 (VAMP8) through its C-terminal coiled coil domain (CCD) to promote autophagic fusion. CMs derived from induced pluripotent stem cells (hiPSC-CMs) from Danon patients exhibit decreased colocalization between ATG14 and VAMP8, profound defects in autophagic fusion, as well as mitochondrial and contractile abnormalities. This phenotype was recapitulated by LAMP-2B knockout in non-Danon hiPSC-CMs. Finally, gene correction of LAMP-2 mutation rescues the Danon phenotype. These findings reveal a STX17-independent autophagic fusion mechanism in human CMs, providing an explanation for cardiomyopathy in Danon patients and a foundation for targeting defective LAMP-2B-mediated autophagy to treat this patient population.
Assuntos
Autofagossomos/metabolismo , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Técnicas de Inativação de Genes , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/genética , Lisossomos/patologia , Miócitos Cardíacos/patologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismoRESUMO
BACKGROUND: Heart failure is a leading cause of death worldwide. Cyclic nucleotide phosphodiesterases (PDEs), through degradation of cyclic nucleotides, play critical roles in cardiovascular biology and disease. Our preliminary screening studies have revealed PDE10A upregulation in the diseased heart. However, the roles of PDE10A in cardiovascular biology and disease are largely uncharacterized. The current study is aimed to investigate the regulation and function of PDE10A in cardiac cells and in the progression of cardiac remodeling and dysfunction. METHODS: We used isolated adult mouse cardiac myocytes and fibroblasts, as well as preclinical mouse models of hypertrophy and heart failure. The PDE10A selective inhibitor TP-10, and global PDE10A knock out mice were used. RESULTS: We found that PDE10A expression remains relatively low in normal and exercised heart tissues. However, PDE10A is significantly upregulated in mouse and human failing hearts. In vitro, PDE10A deficiency or inhibiting PDE10A with selective inhibitor TP-10, attenuated cardiac myocyte pathological hypertrophy induced by Angiotensin II, phenylephrine, and isoproterenol, but did not affect cardiac myocyte physiological hypertrophy induced by IGF-1 (insulin-like growth factor 1). TP-10 also reduced TGF-ß (transforming growth factor-ß)-stimulated cardiac fibroblast activation, proliferation, migration and extracellular matrix synthesis. TP-10 treatment elevated both cAMP and cGMP levels in cardiac myocytes and cardiac fibroblasts, consistent with PDE10A as a cAMP/cGMP dual-specific PDE. In vivo, global PDE10A deficiency significantly attenuated myocardial hypertrophy, cardiac fibrosis, and dysfunction induced by chronic pressure overload via transverse aorta constriction or chronic neurohormonal stimulation via Angiotensin II infusion. Importantly, we demonstrated that the pharmacological effect of TP-10 is specifically through PDE10A inhibition. In addition, TP-10 is able to reverse pre-established cardiac hypertrophy and dysfunction. RNA-Sequencing and bioinformatics analysis further identified a PDE10A-regualted transcriptome involved in cardiac hypertrophy, fibrosis, and cardiomyopathy. CONCLUSIONS: Taken together, our study elucidates a novel role for PDE10A in the regulation of pathological cardiac remodeling and development of heart failure. Given that PDE10A has been proven to be a safe drug target, PDE10A inhibition may represent a novel therapeutic strategy for preventing and treating cardiac diseases associated with cardiac remodeling.
Assuntos
Cardiomegalia/enzimologia , Fibroblastos/enzimologia , Miócitos Cardíacos/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Remodelação Ventricular , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Diester Fosfórico Hidrolases/genética , TranscriptomaRESUMO
Heart disease is associated with the accumulation of resident cardiac fibroblasts (CFs) that secrete extracellular matrix (ECM), leading to the development of pathological fibrosis and heart failure. However, the mechanisms underlying resident CF proliferation remain poorly defined. Here, we report that small proline-rich protein 2b (Sprr2b) is among the most up-regulated genes in CFs during heart disease. We demonstrate that SPRR2B is a regulatory subunit of the USP7/MDM2-containing ubiquitination complex. SPRR2B stimulates the accumulation of MDM2 and the degradation of p53, thus facilitating the proliferation of pathological CFs. Furthermore, SPRR2B phosphorylation by nonreceptor tyrosine kinases in response to TGF-ß1 signaling and free-radical production potentiates SPRR2B activity and cell cycle progression. Knockdown of the Sprr2b gene or inhibition of SPRR2B phosphorylation attenuates USP7/MDM2 binding and p53 degradation, leading to CF cell cycle arrest. Importantly, SPRR2B expression is elevated in cardiac tissue from human heart failure patients and correlates with the proliferative state of patient-derived CFs in a process that is reversed by insulin growth factor-1 signaling. These data establish SPRR2B as a unique component of the USP7/MDM2 ubiquitination complex that drives p53 degradation, CF accumulation, and the development of pathological cardiac fibrosis.
Assuntos
Proliferação de Células , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Animais , Proteínas Ricas em Prolina do Estrato Córneo/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/metabolismo , Proteólise , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Serum response factor (SRF) and the SRF co-activators myocardin-related transcription factors (MRTFs) are essential for epicardium-derived progenitor cell (EPDC)-mobilization during heart development; however, the impact of developmental EPDC deficiencies on adult cardiac physiology has not been evaluated. Here, we utilize the Wilms Tumor-1 (Wt1)-Cre to delete Mrtfs or Srf in the epicardium, which reduced the number of EPDCs in the adult cardiac interstitium. Deficiencies in Wt1-lineage EPDCs prevented the development of cardiac fibrosis and diastolic dysfunction in aged mice. Mice lacking MRTF or SRF in EPDCs also displayed preservation of cardiac function following myocardial infarction partially due to the depletion of Wt1 lineage-derived cells in the infarct. Interestingly, depletion of Wt1-lineage EPDCs allows for the population of the infarct with a Wt1-negative cell lineage with a reduced fibrotic profile. Taken together, our study conclusively demonstrates the contribution of EPDCs to both ischemic cardiac remodeling and the development of diastolic dysfunction in old age, and reveals the existence of an alternative Wt1-negative source of resident fibroblasts that can populate the infarct.
Assuntos
Envelhecimento/patologia , Fibroblastos/patologia , Isquemia Miocárdica/patologia , Pericárdio/patologia , Animais , Linhagem da Célula , Diástole , Fibrose , Coração/fisiopatologia , Camundongos Knockout , Isquemia Miocárdica/fisiopatologia , Fator de Resposta Sérica/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Remodelação Ventricular , Proteínas WT1/metabolismoRESUMO
The differentiation of interstitial lung fibroblasts into contractile myofibroblasts that proliferate and secrete excessive extracellular matrix is critical for the pathogenesis of pulmonary fibrosis. Certain lipid signaling molecules, such as prostaglandins (PGs), can inhibit myofibroblast differentiation. However, the sources and delivery mechanisms of endogenous PGs are undefined. Activated primary human lung fibroblasts (HLFs) produce PGs such as PGE2. We report that activation of primary HLFs with IL-1ß inhibited transforming growth factor ß-induced myofibroblast differentiation in both the IL-1ß-treated cells themselves (autocrine signal) and adjacent naive HLFs in cocultures (paracrine signal). Additionally, we demonstrate for the first time that at least some of the antifibrotic effect of activated fibroblasts on nearby naive fibroblasts is carried by exosomes and other extracellular vesicles that contain several PGs, including high levels of the antifibrotic PGE2. Thus, activated fibroblasts communicate with surrounding cells to limit myofibroblast differentiation and maintain homeostasis. This work opens the way for future research into extracellular vesicle-mediated intercellular signaling in the lung and may inform the development of novel therapies for fibrotic lung diseases.
Assuntos
Antifibrinolíticos/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Prostaglandinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dinoprostona/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: Hypertrophic cardiomyocyte growth and dysfunction accompany various forms of heart disease. The mechanisms responsible for transcriptional changes that affect cardiac physiology and the transition to heart failure are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling cardiomyocyte force transmission and propagation of electrical activity. The ID is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. METHODS: Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor (MRTF)-A and MRTF-B specifically in adult cardiomyocytes to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. RESULTS: We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure. Although mice lacking MRTFs in adult cardiomyocytes display normal cardiac physiology at baseline, pressure overload leads to rapid heart failure characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and cardiomyocyte adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by single-molecule localization microscopy may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. CONCLUSIONS: Our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates cross-talk between the actin and microtubule cytoskeleton and maintains ID integrity and cardiomyocyte homeostasis in heart disease.
Assuntos
Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Animais , Animais Recém-Nascidos , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Células NIH 3T3 , Imagem Individual de Molécula , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Função Ventricular Esquerda , Remodelação VentricularRESUMO
Liver fibrosis is a common consequence of various chronic hepatitis and liver injuries. The myofibroblasts, through the accumulation of extracellular matrix (ECM) proteins, are closely associated with the progression of liver fibrosis. However, the molecular mechanisms underlying transcriptional regulation of fibrogenic genes and ECM proteins in myofibroblasts remain largely unknown. Using tamoxifen inducible myofibroblast-specific Cre-expressing mouse lines with selective deletion of the transcription factor Yin Yang 1 (YY1), here we show that YY1 deletion in myofibroblasts mitigates carbon tetrachloride-induced liver fibrosis. This protective effect of YY1 ablation on liver fibrosis was accompanied with reduced expression of profibrogenic genes and ECM proteins, including TNF-α, TGF-ß, PDGF, IL-6, α-SMA and Col1α1 in liver tissues from YY1 mutant mice. Moreover, using the human hepatic stellate cell (HSC) line LX-2, we found that knockdown of YY1 in myofibroblasts by siRNA treatment diminished myofibroblast proliferation, α-SMA expression, and collagen deposition. Collectively, our findings reveal a specific role of YY1 in hepatic myofibroblasts and suggest a new therapeutic strategy for hepatic fibrosis-associated liver diseases.
Assuntos
Cirrose Hepática/patologia , Miofibroblastos/patologia , Fator de Transcrição YY1/genética , Animais , Linhagem Celular , Deleção de Genes , Humanos , Cirrose Hepática/genética , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Interferência de RNARESUMO
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-ß-stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance.
RESUMO
Podocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the in vivo expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys. Compared with littermate controls, mice in which the Srf gene was conditionally inactivated with NPHS2-Cre exhibited early postnatal proteinuria, hypoalbuminemia, and azotemia. Histologic changes in the mutant mice included glomerular capillary dilation and mild glomerulosclerosis, with reduced expression of multiple canonical podocyte markers. We also noted tubular dilation, cell proliferation, and protein casts as well as reactive changes in mesangial cells and interstitial inflammation. Ultrastructure analysis disclosed foot process effacement with loss of slit diaphragms. To ascertain the importance of SRF cofactors in podocyte function, we disabled the myocardin-related transcription factor A and B genes. Although loss of either SRF cofactor alone had no observable effect in the kidney, deficiency of both recapitulated the Srf-null phenotype. These results establish a vital role for SRF and two SRF cofactors in the maintenance of podocyte structure and function.
Assuntos
Actinas/metabolismo , Podócitos/metabolismo , Podócitos/ultraestrutura , Fator de Resposta Sérica/fisiologia , Transativadores/genética , Fatores de Transcrição/genética , Actinina/genética , Actinas/genética , Animais , Citoesqueleto , Dilatação Patológica/genética , Feminino , Humanos , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Podócitos/fisiologia , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Fator de Resposta Sérica/genética , Proteínas WT1RESUMO
An important pool of cardiovascular progenitor cells arises from the epicardium, a single layer of mesothelium lining the heart. Epicardium-derived progenitor cell (EPDC) formation requires epithelial-to-mesenchymal transition (EMT) and the subsequent migration of these cells into the sub-epicardial space. Although some of the physiological signals that promote EMT are understood, the functional mediators of EPDC motility and differentiation are not known. Here, we identify a novel regulatory mechanism of EPDC mobilization. Myocardin-related transcription factor (MRTF)-A and MRTF-B (MKL1 and MKL2, respectively) are enriched in the perinuclear space of epicardial cells during development. Transforming growth factor (TGF)-ß signaling and disassembly of cell contacts leads to nuclear accumulation of MRTFs and the activation of the motile gene expression program. Conditional ablation of Mrtfa and Mrtfb specifically in the epicardium disrupts cell migration and leads to sub-epicardial hemorrhage, partially stemming from the depletion of coronary pericytes. Using lineage-tracing analyses, we demonstrate that sub-epicardial pericytes arise from EPDCs in a process that requires the MRTF-dependent motile gene expression program. These findings provide novel mechanisms linking EPDC motility and differentiation, shed light on the transcriptional control of coronary microvascular maturation and suggest novel therapeutic strategies to manipulate epicardium-derived progenitor cells for cardiac repair.
Assuntos
Movimento Celular , Vasos Coronários/crescimento & desenvolvimento , Pericárdio/citologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/metabolismo , Pericárdio/ultraestrutura , Pericitos/citologia , Pericitos/efeitos dos fármacos , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
First recognized as regulators of development in worms and fruitflies, microRNAs are emerging as pivotal modulators of mammalian cardiovascular development and disease. Individual microRNAs modulate the expression of collections of messenger RNA targets that often have related functions, thereby governing complex biological processes. The wideranging functions of microRNAs in the cardiovascular system have provided new perspectives on disease mechanisms and have revealed intriguing therapeutic targets, as well as diagnostics, for a variety of cardiovascular disorders.
Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular/embriologia , Sistema Cardiovascular/crescimento & desenvolvimento , Humanos , MicroRNAs/antagonistas & inibidores , MutaçãoRESUMO
Vascular injury triggers dedifferentiation and cytoskeletal remodeling of smooth muscle cells (SMCs), culminating in vessel occlusion. Serum response factor (SRF) and its coactivator, myocardin, play a central role in the control of smooth muscle phenotypes by regulating the expression of cytoskeletal genes. We show that SRF and myocardin regulate a cardiovascular-specific microRNA (miRNA) cluster encoding miR-143 and miR-145. To assess the functions of these miRNAs in vivo, we systematically deleted them singly and in combination in mice. Mice lacking both miR-143 and miR-145 are viable and do not display overt abnormalities in smooth muscle differentiation, although they show a significant reduction in blood pressure due to reduced vascular tone. Remarkably, however, neointima formation in response to vascular injury is profoundly impeded in mice lacking these miRNAs, due to disarray of actin stress fibers and diminished migratory activity of SMCs. These abnormalities reflect the regulation of a cadre of modulators of SRF activity and actin dynamics by miR-143 and miR-145. Thus, miR-143 and miR-145 act as integral components of the regulatory network whereby SRF controls cytoskeletal remodeling and phenotypic switching of SMCs during vascular disease.