Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982604

RESUMO

The brain's extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer's disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aß1-40. Negative correlations were detected with the Aß ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.


Assuntos
Doença de Alzheimer , Neurocam , Humanos , Brevicam/metabolismo , Agrecanas/metabolismo , Neurocam/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Matriz Extracelular/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo
2.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169379

RESUMO

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Assuntos
Sinapses Imunológicas/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Animais , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Cálcio/imunologia , Linhagem Celular Tumoral , Membrana Celular/imunologia , Células Cultivadas , Feminino , Expressão Gênica/imunologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Células Jurkat , Canal de Potássio Kv1.3/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
3.
Traffic ; 18(1): 29-43, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27743426

RESUMO

K2P 5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P 5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P 5.1 and 14-3-3. The mutant K2P 5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P 5.1 and plays an important role in channel trafficking.


Assuntos
Proteínas 14-3-3/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia , Regulação para Cima/fisiologia
4.
Int J Neuropsychopharmacol ; 22(3): 232-246, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535257

RESUMO

BACKGROUND: Stress precipitates mood disorders, characterized by a range of symptoms present in different combinations, suggesting the existence of disease subtypes. Using an animal model, we previously described that repetitive stress via restraint or immobilization induced depressive-like behaviors in rats that were differentially reverted by a serotonin- or noradrenaline-based antidepressant drug, indicating that different neurobiological mechanisms may be involved. The forebrain astrocyte protein aldolase C, contained in small extracellular vesicles, was identified as a potential biomarker in the cerebrospinal fluid; however, its specific origin remains unknown. Here, we propose to investigate whether serum small extracellular vesicles contain a stress-specific protein cargo and whether serum aldolase C has a brain origin. METHODS: We isolated and characterized serum small extracellular vesicles from rats exposed to restraint, immobilization, or no stress, and their proteomes were identified by mass spectrometry. Data available via ProteomeXchange with identifier PXD009085 were validated, in part, by western blot. In utero electroporation was performed to study the direct transfer of recombinant aldolase C-GFP from brain cells to blood small extracellular vesicles. RESULTS: A differential proteome was identified among the experimental groups, including aldolase C, astrocytic glial fibrillary acidic protein, synaptophysin, and reelin. Additionally, we observed that, when expressed in the brain, aldolase C tagged with green fluorescent protein could be recovered in serum small extracellular vesicles. CONCLUSION: The protein cargo of serum small extracellular vesicles constitutes a valuable source of biomarkers of stress-induced diseases, including those characterized by depressive-like behaviors. Brain-to-periphery signaling mediated by a differential molecular cargo of small extracellular vesicles is a novel and challenging mechanism by which the brain might communicate health and disease states to the rest of the body.


Assuntos
Astrócitos/metabolismo , Moléculas de Adesão Celular Neuronais/sangue , Proteínas da Matriz Extracelular/sangue , Vesículas Extracelulares/metabolismo , Frutose-Bifosfato Aldolase/sangue , Proteína Glial Fibrilar Ácida/sangue , Proteínas do Tecido Nervoso/sangue , Serina Endopeptidases/sangue , Estresse Psicológico/sangue , Animais , Biomarcadores/sangue , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Vesículas Extracelulares/genética , Frutose-Bifosfato Aldolase/genética , Proteína Glial Fibrilar Ácida/genética , Masculino , Proteínas do Tecido Nervoso/genética , Mapas de Interação de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley , Proteína Reelina , Restrição Física/efeitos adversos , Restrição Física/psicologia , Serina Endopeptidases/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Sinaptofisina/sangue , Sinaptofisina/genética
5.
J Neuroinflammation ; 15(1): 216, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068357

RESUMO

BACKGROUND: Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. METHODS: Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. RESULTS: A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. CONCLUSION: These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Sinapses/metabolismo , Sinaptossomos/metabolismo , Toxoplasmose Animal/patologia , Animais , Antiprotozoários/farmacologia , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metanálise como Assunto , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Sulfadiazina/farmacologia , Sinapses/patologia , Sinaptossomos/efeitos dos fármacos , Espectrometria de Massas em Tandem , Toxoplasma/patogenicidade
6.
Nature ; 486(7402): 256-60, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22699619

RESUMO

Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αß(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Autístico/genética , Comportamento Animal/fisiologia , Proteínas do Tecido Nervoso/genética , Agitação Psicomotora/genética , Animais , Transtorno Autístico/patologia , Espinhas Dendríticas/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agitação Psicomotora/patologia , Receptores Ionotrópicos de Glutamato/metabolismo , Sinapses/metabolismo , Regulação para Cima , Vocalização Animal/fisiologia
7.
J Neurochem ; 138(1): 124-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27062398

RESUMO

Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing.


Assuntos
Estimulação Acústica , Encéfalo/metabolismo , Aprendizagem por Discriminação/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Vias Auditivas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 289(13): 8973-88, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24554721

RESUMO

Formation, maintenance, and activity of excitatory and inhibitory synapses are essential for neuronal network function. Cell adhesion molecules (CAMs) are crucially involved in these processes. The CAM neuroplastin-65 (Np65) highly expressed during periods of synapse formation and stabilization is present at the pre- and postsynaptic membranes. Np65 can translocate into synapses in response to electrical stimulation and it interacts with subtypes of GABAA receptors in inhibitory synapses. Here, we report that in the murine hippocampus and in hippocampal primary culture, neurons of the CA1 region and the dentate gyrus (DG) express high Np65 levels, whereas expression in CA3 neurons is lower. In neuroplastin-deficient (Np(-/-)) mice the number of excitatory synapses in CA1 and DG, but not CA3 regions is reduced. Notably this picture is mirrored in mature Np(-/-) hippocampal cultures or in mature CA1 and DG wild-type (Np(+/+)) neurons treated with a function-blocking recombinant Np65-Fc extracellular fragment. Although the number of GABAergic synapses was unchanged in Np(-/-) neurons or in mature Np65-Fc-treated Np(+/+) neurons, the ratio of excitatory to inhibitory synapses was significantly lower in Np(-/-) cultures. Furthermore, GABAA receptor composition was altered at inhibitory synapses in Np(-/-) neurons as the α1 to α2 GABAA receptor subunit ratio was increased. Changes of excitatory and inhibitory synaptic function in Np(-/-) neurons were confirmed evaluating the presynaptic release function and using patch clamp recording. These data demonstrate that Np65 is an important regulator of the number and function of synapses in the hippocampus.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Glicoproteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Contagem de Células , Giro Denteado/citologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Glicoproteínas de Membrana/deficiência , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos
9.
Proteome Sci ; 13: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852303

RESUMO

BACKGROUND: Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. RESULTS: After auditory-cortical injection of SKF38393 - a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C - prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 - a D1/D5 agonist reported to preferentially stimulate phospholipase C - induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. CONCLUSIONS: Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation.

10.
J Neurochem ; 131(3): 268-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25040546

RESUMO

The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD, animal and human behaviour, and pathophysiology and disease. It focuses particularly on Neuroplastin binding partners and signalling mechanisms, and proposes perspectives for future research on these important immunoglobulin superfamily members.


Assuntos
Glicoproteínas de Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Encefalopatias/genética , Encefalopatias/patologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal/genética , Sinapses/genética
11.
EJNMMI Radiopharm Chem ; 9(1): 26, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551764

RESUMO

BACKGROUND: To investigate the capacity of 99mTc-labeled 1-thio-ß-D-glucose (1-TG) and 5-thio-D-glucose (5-TG) to act as a marker for glucose consumption in tumor cells in vivo as well as to evaluate the biodistribution of 1-TG and 5-TG. We investigated the biodistribution, including tumor uptake, of 1-TG and 5-TG at various time points after injection (0.5, 2 and 4 h) in human colorectal carcinoma (HCT-116) and human lung adenocarcinoma (A549) xenograft bearing nude mice (N = 4 per tracer and time point). RESULTS: Ex vivo biodistribution studies revealed a moderate uptake with a maximum tumor-to-muscle ratio of 4.22 ± 2.7 and 2.2 ± 1.3 (HCT-116) and of 3.2 ± 1.1 and 4.1 ± 1.3 (A549) for 1-TG and 5-TG, respectively, with a peak at 4 h for 1-TG and 5-TG. Biodistribution revealed a significantly higher uptake compared to blood in kidneys (12.18 ± 8.77 and 12.69 ± 8.93%ID/g at 30 min) and liver (2.6 ± 2.8%ID/g) for 1-TG and in the lung (7.24 ± 4.1%ID/g), liver (6.38 ± 2.94%ID/g), and kidneys (4.71 ± 1.97 and 4.81 ± 1.91%ID/g) for 5-TG. CONCLUSIONS: 1-TG and 5-TG showed an insufficient tumor uptake with a moderate tumor-to-muscle ratio, not reaching the levels of commonly used tracer, for diagnostic use in human colorectal carcinoma and human lung adenocarcinoma xenograft model.

12.
J Biol Chem ; 287(17): 14201-14, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22389504

RESUMO

γ-Aminobutyric acid type A (GABA(A)) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABA(A) receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABA(A) receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABA(A) receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABA(A) receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABA(A) receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABA(A) receptor subtypes and might contribute to anchoring and/or confining GABA(A) receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Animais , Encéfalo/embriologia , Proteínas de Transporte/química , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de Membrana/química , Neurotransmissores/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo
13.
Hippocampus ; 23(8): 672-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23536525

RESUMO

Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo-like kinase 1. Together with its recently observed genetic association to autism-spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.


Assuntos
Discriminação Psicológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Proteínas Quinases/metabolismo , Percepção Espacial/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Extinção Psicológica , Masculino , Aprendizagem em Labirinto , Camundongos , Fosforilação/fisiologia , Análise Serial de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Tempo , Quinase 1 Polo-Like
14.
Magn Reson Med ; 69(1): 263-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22374834

RESUMO

Water-macromolecule exchange induces a bulk water frequency shift contributing to the contrast in phase imaging. For separating the effects of the water-macromolecule exchange and the macromolecule susceptibility, appropriate internal or external references are needed. In this study, two internal reference compounds, 2,2,3,3-tetradeuterio-3-trimethylsilyl-propionate (TMSP) and 1,4-dioxane, were used to study the macromolecule-dependent water frequency shift in a bovine serum albumin (BSA)-water system in detail. For TMSP, the water-macromolecule exchange shift depended on both the BSA and the reference concentration and stabilized to a value of 0.025 ppm/mM (298 K, TMSP concentrations > 30 mM). For dioxane, the dependency of the water-macromolecule exchange shift on the BSA concentration is independent of dioxane at low concentrations. The resulting shift was smaller (0.009 ppm/mM) when compared with using higher TMSP concentrations as reference. This discrepancy might be due to additional dioxane-water interactions. Measurements with an external chloroform reference in a coaxial geometry showed a shift of -0.013 ppm/mM resulting from the opposing effects of macromolecules in water exchange-induced shift and diamagnetic susceptibility shift. All these effects should be considered in the interpretation of tissue phase contrast. From the experimental data, the equilibrium binding constant between BSA and TMSP has been quantified to be K(d) = 1.3 ± 0.4, and the estimated number of interaction sites for BSA is 12.7 ± 2.6.


Assuntos
Substâncias Macromoleculares/química , Imageamento por Ressonância Magnética , Água/química , Animais , Bovinos , Dioxanos/química , Propionatos/química , Soroalbumina Bovina , Compostos de Trimetilsilil/química
15.
J Chem Neuroanat ; 132: 102321, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524128

RESUMO

Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.


Assuntos
Encefalopatias , Proibitinas , Humanos , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Encefalopatias/metabolismo
16.
Proteomics ; 12(15-16): 2433-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696468

RESUMO

Changes in synaptic efficacy underlying learning and memory processes are assumed to be associated with alterations of the protein composition of synapses. Here, we performed a quantitative proteomic screen to monitor changes in the synaptic proteome of four brain areas (auditory cortex, frontal cortex, hippocampus striatum) during auditory learning. Mice were trained in a shuttle box GO/NO-GO paradigm to discriminate between rising and falling frequency modulated tones to avoid mild electric foot shock. Control-treated mice received corresponding numbers of either the tones or the foot shocks. Six hours and 24 h later, the composition of a fraction enriched in synaptic cytomatrix-associated proteins was compared to that obtained from naïve mice by quantitative mass spectrometry. In the synaptic protein fraction obtained from trained mice, the average percentage (±SEM) of downregulated proteins (59.9 ± 0.5%) exceeded that of upregulated proteins (23.5 ± 0.8%) in the brain regions studied. This effect was significantly smaller in foot shock (42.7 ± 0.6% down, 40.7 ± 1.0% up) and tone controls (43.9 ± 1.0% down, 39.7 ± 0.9% up). These data suggest that learning processes initially induce removal and/or degradation of proteins from presynaptic and postsynaptic cytoskeletal matrices before these structures can acquire a new, postlearning organisation. In silico analysis points to a general role of insulin-like signalling in this process.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Aprendizagem por Discriminação/fisiologia , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Aprendizagem da Esquiva , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
17.
Eur J Neurosci ; 35(5): 763-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22339853

RESUMO

In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Aprendizagem por Discriminação/fisiologia , Dopamina/fisiologia , Memória/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Córtex Auditivo/efeitos dos fármacos , Benzazepinas/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Gerbillinae , Masculino , Memória/efeitos dos fármacos
18.
J Cell Sci ; 123(Pt 12): 2045-57, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483957

RESUMO

Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters.


Assuntos
Sinapses/metabolismo , Canais de Cátion TRPV/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Camundongos , Neuritos/metabolismo , Neurônios/metabolismo , Transporte Proteico , Pseudópodes/genética , Pseudópodes/metabolismo , Sinapses/genética , Canais de Cátion TRPV/genética
19.
Proc Natl Acad Sci U S A ; 106(22): 9093-8, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458041

RESUMO

Phosphatidylinositol 4-OH kinase IIIbeta (PI-4Kbeta) is involved in the regulated local synthesis of phospholipids that are crucial for trans-Golgi network (TGN)-to-plasma membrane trafficking. In this study, we show that the calcium sensor proteins calneuron-1 and calneuron-2 physically associate with PI-4Kbeta, inhibit the enzyme profoundly at resting and low calcium levels, and negatively interfere with Golgi-to-plasma membrane trafficking. At high calcium levels this inhibition is released and PI-4Kbeta is activated via a preferential association with neuronal calcium sensor-1 (NCS-1). In accord to its supposed function as a filter for subthreshold Golgi calcium transients, neuronal overexpression of calneuron-1 enlarges the size of the TGN caused by a build-up of vesicle proteins and reduces the number of axonal Piccolo-Bassoon transport vesicles, large dense core vesicles that carry a set of essential proteins for the formation of the presynaptic active zone during development. A corresponding protein knockdown has the opposite effect. The opposing roles of calneurons and NCS-1 provide a molecular switch to decode local calcium transients at the Golgi and impose a calcium threshold for PI-4Kbeta activity and vesicle trafficking.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Rede trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Células COS , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Transporte Proteico , Ratos
20.
Mitochondrion ; 67: 38-58, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36261119

RESUMO

TRPV4 is associated with the development of neuropathic pain, sensory defects, muscular dystrophies, neurodegenerative disorders, Charcot Marie Tooth and skeletal dysplasia. In all these cases, mitochondrial abnormalities are prominent. Here, we demonstrate that TRPV4, localizes to a subpopulation of mitochondria in various cell lines. Improper expression and/or function of TRPV4 induces several mitochondrial abnormalities. TRPV4 is also involved in the regulation of mitochondrial numbers, Ca2+-levels and mitochondrial temperature. Accordingly, several naturally occurring TRPV4 mutations affect mitochondrial morphology and distribution. These findings may help in understanding the significance of mitochondria in TRPV4-mediated channelopathies possibly classifying them as mitochondrial diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Distrofias Musculares , Humanos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Distrofias Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa