Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 573(7775): 558-562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31554980

RESUMO

High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.


Assuntos
Hidrogênio/química , Modelos Moleculares , Pressão , Eletrônica , Difração de Nêutrons , Transição de Fase , Difração de Raios X
2.
Phys Rev Lett ; 126(17): 175501, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988447

RESUMO

High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.

3.
Proc Natl Acad Sci U S A ; 115(9): 2010-2015, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440411

RESUMO

Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter.

4.
Phys Rev Lett ; 125(15): 155702, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095607

RESUMO

High-pressure metallic ß-Sn silicon (Si-II), depending on temperature, decompression rate, stress, etc., may transform to diverse metastable forms with promising semiconducting properties under decompression. However, the underlying mechanisms governing the different transformation paths are not well understood. Here, two distinctive pathways, viz., a thermally activated crystal-crystal transition and a mechanically driven amorphization, were characterized under rapid decompression of Si-II at various temperatures using in situ time-resolved x-ray diffraction. Under slow decompression, Si-II transforms to a crystalline bc8/r8 phase in the pressure range of 4.3-9.2 GPa through a thermally activated process where the overdepressurization and the onset transition strain are strongly dependent on decompression rate and temperature. In comparison, Si-II collapses structurally to an amorphous form at around 4.3 GPa when the volume expansion approaches a critical strain via rapid decompression beyond a threshold rate. The occurrence of the critical strain indicates a limit of the structural metastability of Si-II, which separates the thermally activated and mechanically driven transition processes. The results show the coupled effect of decompression rate, activation barrier, and thermal energy on the adopted transformation paths, providing atomistic insight into the competition between equilibrium and nonequilibrium pathways and the resulting metastable phases.

5.
Proc Natl Acad Sci U S A ; 114(14): 3596-3600, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28289218

RESUMO

"Chemical precompression" through introducing impurity atoms into hydrogen has been proposed as a method to facilitate metallization of hydrogen under external pressure. Here we selected Ar(H2)2, a hydrogen-rich compound with molecular hydrogen, to explore the effect of "doping" on the intermolecular interaction of H2 molecules and metallization at ultrahigh pressure. Ar(H2)2 was studied experimentally by synchrotron X-ray diffraction to 265 GPa, by Raman and optical absorption spectroscopy to 358 GPa, and theoretically using the density-functional theory. Our measurements of the optical bandgap and the vibron frequency show that Ar(H2)2 retains 2-eV bandgap and H2 molecular units up to 358 GPa. This is attributed to reduced intermolecular interactions between H2 molecules in Ar(H2)2 compared with that in solid H2 A splitting of the molecular vibron mode above 216 GPa suggests an orientational ordering transition, which is not accompanied by a change in lattice symmetry. The experimental and theoretical equations of state of Ar(H2)2 provide direct insight into the structure and bonding of this hydrogen-rich system, suggesting a negative chemical pressure on H2 molecules brought about by doping of Ar.

6.
J Synchrotron Radiat ; 26(Pt 4): 1245-1252, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274450

RESUMO

The transparent conducting oxide, SnO2, is a promising optoelectronic material with predicted tailorable properties via pressure-mediated band gap opening. While such electronic properties are typically modeled assuming perfect crystallinity, disordering of the O sublattice under pressure is qualitatively known. Here a quantitative approach is thus employed, combining extended X-ray absorption fine-structure (EXAFS) spectroscopy with X-ray diffraction, to probe the extent of Sn-O bond anharmonicities in the high-pressure cubic (Pa\bar{3}) SnO2 - formed as a single phase and annealed by CO2 laser heating to 2648 ± 41 K at 44.5 GPa. This combinational study reveals and quantifies a large degree of disordering in the O sublattice, while the Sn lattice remains ordered. Moreover, this study describes implementation of direct laser heating of non-metallic samples by CO2 laser alongside EXAFS, and the high quality of data which may be achieved at high pressures in a diamond anvil cell when appropriate thermal annealing is applied.


Assuntos
Pressão , Compostos de Estanho/química , Difração de Raios X/métodos , Lasers , Espectroscopia por Absorção de Raios X/métodos
7.
Phys Rev Lett ; 123(6): 065701, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491150

RESUMO

We investigate the phase diagram of lithium at temperatures of 200 to 400 K, to pressures over 100 GPa using x-ray diffraction in diamond anvil cells, covering the region in which the melting curve is disputed. To overcome degradation of the diamond anvils by dense lithium we utilize a rapid compression scheme taking advantage of the high flux available at modern synchrotrons. Our results show the hR1 and cI16 phases to be stable to higher temperature than previously reported. The melting minima of lithium is found to be close to room temperature between 40 and 60 GPa, below which the solid is crystalline. Analysis of the stability fields of the cI16 and oC88 phases suggest the existence of a triple point between these and an undetermined solid phase at 60 GPa between 220 and 255 K.

8.
J Chem Phys ; 150(24): 244201, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255054

RESUMO

Amorphous-amorphous transformations in H2O have been studied under rapid isothermal compression and decompression in a diamond anvil cell together with in situ x-ray diffraction measurements using brilliant synchrotron radiation. The experimental pathways provide a density-driven approach for studying polyamorphic relations among low-, high-, and very high-density amorphs (LDA, HDA, VHDA) in a pressure range of 0-3.5 GPa at temperatures of 145-160 K. Our approach using rapid (de)compression allows for studying the polyamorphic transformations at higher temperatures than the conditions previously studied under slow (de)compression or isobaric annealing. Multiple compression-decompression cycles can be integrated with in situ x-ray measurements, thus facilitating the study of repeatability and reversibility of the polyamorphic transformations. Fast in situ x-ray diffraction measurements allow for obtaining detailed insight into the structural changes across polyamorphic transformations regarding the (dis)continuity, reversibility, and possible intermediate forms. As demonstrated at isothermal conditions of 145 K and 155 K, the polyamorphic transformations are characterized by a sharp and reversible LDA-VHDA transformation, with an HDA-like form (referred to as HDA') appearing as an intermediate state. The LDA-VHDA transformation is found to occur in two steps: a discontinuous transition between LDA and HDA' and a continuous change within HDA' involving structural reconfigurations and finally converging to VHDA.

9.
Proc Natl Acad Sci U S A ; 113(20): 5547-51, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27143719

RESUMO

Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth's core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce the seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich postbridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth's core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.

10.
Phys Rev Lett ; 121(22): 225703, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547611

RESUMO

Pressure-induced formation of amorphous ices and the low-density amorphous (LDA) to high-density amorphous (HDA) transition have been believed to occur kinetically below a crossover temperature (T_{c}) above which thermodynamically driven crystalline-crystalline (e.g., ice I_{h}-to-II) transitions and crystallization of HDA and LDA are dominant. Here we show compression-rate-dependent formation of a high-density noncrystalline (HDN) phase transformed from ice I_{c} above T_{c}, bypassing crystalline-crystalline transitions under rapid compression. Rapid decompression above T_{c} transforms HDN to a low-density noncrystalline (LDN) phase which crystallizes spontaneously into ice I_{c}, whereas slow decompression of HDN leads to direct crystallization. The results indicate the formation of HDA and the HDN-to-LDN transition above T_{c} are results of competition between (de)compression rate, energy barrier, and temperature. The crossover temperature is shown to have an exponential relationship with the threshold compression rate. The present results provide important insight into the dynamic property of the phase transitions in addition to the static study.

11.
Inorg Chem ; 57(24): 15051-15061, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-29963857

RESUMO

Natural specimens of the pyrochlore (A2B2O7) compounds have been found to retain foreign actinide impurities within their parent framework, undergoing metamictization to a fully amorphous state. The response to radionuclide decay identifies pyrochlore systems with having high radiation tolerance and tailored use in radioactive waste applications and radionuclide sequestration. High pressure is a powerful pathway to high density states and amorphization with parallels to radiation-induced processes. Here, La2Sn2O7 is evaluated under extreme conditions via the combination of laser heating in a diamond anvil cell with X-ray diffraction and Raman spectroscopy. The measurements are supported by ab initio random structure searching and molecular dynamics calculations. A new ground state at 70 GPa is revealed, and high temperature annealing is fundamental to access its crystalline ground state and fully determine the structure. This crystalline phase ( P21/ c) retains its structural integrity during decompression and is fully recoverable to ambient conditions. The final state of the system is shown to be highly pathway dependent due to the covalent nature of the Sn-O bonding. The Tc pyrochlore, La2Tc2O7, is analyzed for similarities in the bonding to determine the likelihood of an analogous pathway dependency to a final state.

12.
Angew Chem Int Ed Engl ; 57(36): 11623-11628, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30022577

RESUMO

The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high-pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3 N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue-shift spanning the entire visible spectrum. The pressure-mediated band gap opening is general to this material across numerous high-density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure-tuneable electronic properties for future applications.

13.
Phys Rev Lett ; 119(13): 135701, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341714

RESUMO

We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

14.
J Chem Phys ; 142(19): 194503, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001465

RESUMO

Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN)3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN)3 is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp(2) character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

15.
J Chem Phys ; 141(23): 234506, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527947

RESUMO

Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

16.
Nat Commun ; 15(1): 7054, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147793

RESUMO

Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied, whereas strain-induced PTs have never been studied in situ. Here, we reveal in situ various important plastic strain-induced PT phenomena. A correlation between the direct and inverse Hall-Petch effect of particle size on yield strength and pressure for strain-induced PT is predicted theoretically and confirmed experimentally for Si-I→Si-II PT. For 100 nm particles, the strain-induced PT Si-I→Si-II initiates at 0.3 GPa under both compression and shear while it starts at 16.2 GPa under hydrostatic conditions. The Si-I→Si-III PT starts at 0.6 GPa but does not occur under hydrostatic pressure. Pressure in small Si-II and Si-III regions of micron and 100 nm particles is ∼5-7 GPa higher than in Si-I. For 100 nm Si, a sequence of Si-I → I + II → I + II + III PT is observed, and the coexistence of four phases, Si-I, II, III, and XI, is found under torsion. Retaining Si-II and single-phase Si-III at ambient pressure and obtaining reverse Si-II→Si-I PT demonstrates the possibilities of manipulating different synthetic paths. The obtained results corroborate the elaborated dislocation pileup-based mechanism and have numerous applications for developing economic defect-induced synthesis of nanostructured materials, surface treatment (polishing, turning, etc.), and friction.

17.
Orthop J Sports Med ; 12(8): 23259671241248457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135861

RESUMO

Background: Medial meniscal extrusion (MME) has been associated with knee osteoarthritis (OA). However, there is no standardized method to measure MME. Purpose/Hypothesis: The purpose of this study was to investigate the relationship between MME and outcome measures related to knee OA and discuss different magnetic resonance imaging (MRI) methods of measuring MME. It was hypothesized that MME would be associated with outcome measures of OA and that the distance extruded over the tibial plateau would be the most common MRI method to measure MME. Study Design: Systematic review; Level of evidence, 3. Methods: The MEDLINE, Embase, Cochrane Library, Scopus, Web of Science Core Collection, Global Index Medicus, and ClinicalTrials.gov databases were systematically searched. The inclusion criteria were studies that (1) measured MME on nonoperated knees using MRI; (2) evaluated knee OA with at least 1 knee OA grading scale, outcome measure, or direct characterization of cartilage or bone; (3) statistically evaluated the association between MME and knee OA outcome measure; (4) were randomized controlled trials, nonrandomized controlled trials, cohort studies, or case series; and (5) reported original results. Results: A total of 19 studies were included, of which 14 reported MME as the distance extruded over the tibial plateau, 7 reported MME as the volume extruded over the tibial plateau, and 1 reported MME as the percentage of the tibial plateau covered by the meniscus. All studies reported that MME was significantly associated with at least 1 OA outcome measure-including increased Kellgren-Lawrence grade, osteophytes, cartilage damage, varus alignment, knee pain, bone marrow lesions, and progression to arthroplasty. Eight studies found that MME was associated with worse OA outcomes over time (range, 2-10 years). Conclusion: All 19 reviewed studies reported that MME was associated with at least 1 knee OA outcome measure reflective of worsening arthritis, suggesting a strong association between OA and MME. Future research is needed to investigate this relationship and standardize the methods of measuring MME.

18.
Radiol Adv ; 1(1): umae005, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38855428

RESUMO

Background: Medial meniscus root tears often lead to knee osteoarthritis. The extent of meniscal tissue changes beyond the localized root tear is unknown. Purpose: To evaluate if 7 Tesla 3D T2*-mapping can detect intrasubstance meniscal degeneration in patients with arthroscopically verified medial meniscus posterior root tears (MMPRTs), and assess if tissue changes extend beyond the immediate site of the posterior root tear detected on surface examination by arthroscopy. Methods: In this prospective study we acquired 7 T knee MRIs from patients with MMPRTs and asymptomatic controls. Using a linear mixed model, we compared T2* values between patients and controls, and across different meniscal regions. Patients underwent arthroscopic assessment before MMPRT repair. Changes in pain levels before and after repair were calculated using Knee Injury & Osteoarthritis Outcome Score (KOOS). Pain changes and meniscal extrusion were correlated with T2* using Pearson correlation (r). Results: Twenty patients (mean age 53 ± 8; 16 females) demonstrated significantly higher T2* values across the medial meniscus (anterior horn, posterior body and posterior horn: all P < .001; anterior body: P = .007), and lateral meniscus anterior (P = .024) and posterior (P < .001) horns when compared to the corresponding regions in ten matched controls (mean age 53 ± 12; 8 females). Elevated T2* values were inversely correlated with the change in pain levels before and after repair. All patients had medial meniscal extrusion of ≥2 mm. Arthroscopy did not reveal surface abnormalities in 70% of patients (14 out of 20). Conclusions: Elevated T2* values across both medial and lateral menisci indicate that degenerative changes in patients with MMPRTs extend beyond the immediate vicinity of the posterior root tear. This suggests more widespread meniscal degeneration, often undetected by surface examinations in arthroscopy.

19.
Chem Commun (Camb) ; 60(8): 1047, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38223922

RESUMO

Retraction of 'Carbon content drives high temperature superconductivity in a carbonaceous sulfur hydride below 100 GPa' by G. Alexander Smith et al., Chem. Commun., 2022, 58, 9064-9067, https://doi.org/10.1039/D2CC03170A.

20.
Sci Rep ; 12(1): 12341, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853930

RESUMO

The lithium-palladium and lithium-palladium-hydrogen systems are investigated at high pressures at and above room temperature. Two novel lithium-palladium compounds are found below [Formula: see text]. An ambient temperature phase is tentatively assigned as [Formula: see text], with [Formula: see text] Å at 8.64 GPa, isostructural with [Formula: see text]. The other phase occurs at high-temperature and is [Formula: see text], [Formula: see text] Å at 3.88 GPa and 200 [Formula: see text], similar to [Formula: see text], which is also known at high pressure. The presence of hydrogen in the system results in an [Formula: see text] structure with [Formula: see text] Å at 9.74 GPa. This persists up to [Formula: see text], the highest pressure studied. Below [Formula: see text] an fcc phase with a large unit cell, [Formula: see text] Å at 0.39 GPa, is also observed in the presence of hydrogen. On heating the hydrogen containing system at 4 GPa the [Formula: see text] phases persists to the melting point of lithium. In both systems melting the lithium results in the loss of crystalline diffraction from palladium containing phases. This is attributed to dissolution of the palladium in the molten lithium, and on cooling the palladium remains dispersed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa