Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Syst Biol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554255

RESUMO

Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, climate) or biotic factors (traits, interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts were critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.

2.
Mol Phylogenet Evol ; 198: 108136, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909873

RESUMO

Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.

3.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212724

RESUMO

Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix-loop-helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.


Assuntos
Flores , Fatores de Transcrição , Antocianinas , Flavonoides/genética , Flavonoides/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
4.
Am Nat ; 202(2): 152-165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531276

RESUMO

AbstractAbiotic factors (e.g., temperature, precipitation) vary markedly along elevational gradients and differentially affect major groups of pollinators. Ectothermic bees, for example, are impeded in visiting flowers by cold and rainy conditions common at high elevations, while endothermic hummingbirds may continue foraging under such conditions. Despite the possibly far-reaching effects of the abiotic environment on plant-pollinator interactions, we know little about how these factors play out at broad ecogeographic scales. We address this knowledge gap by investigating how pollination systems vary across elevations in 26 plant clades from the Americas. Specifically, we explore Cruden's 1972 hypothesis that the harsh montane environment drives a turnover from insect to vertebrate pollination at higher elevations. We compared the elevational distribution and bioclimatic attributes for a total of 2,232 flowering plants and found that Cruden's hypothesis holds only in the tropics. Above 30°N and below 30°S, plants pollinated by vertebrates (mostly hummingbirds) tend to occur at lower elevations than those pollinated by insects. We hypothesize that this latitudinal transition is due to the distribution of moist, forested habitats favored by vertebrate pollinators, which are common at high elevations in the tropics but not in the temperate Americas.


Assuntos
Altitude , Polinização , Abelhas , Animais , Flores , Ecossistema , Insetos , Plantas , Aves , América
5.
Proc Biol Sci ; 290(2002): 20230275, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37403504

RESUMO

The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which contains ca 180 species of Petunia and related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production.


Assuntos
Petunia , Petunia/genética , Petunia/metabolismo , Cor , Flavonoides/metabolismo , Pigmentação/genética , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas
6.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960534

RESUMO

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Assuntos
Capsicum , Solanum , Fósseis , Frutas , América do Sul , Filogenia
7.
Am J Bot ; 110(10): e16230, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37807697

RESUMO

PREMISE: The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS: In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS: Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS: Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.


Assuntos
Magnoliopsida , Sarraceniaceae , Filogenia , Áreas Alagadas , Carnivoridade , Magnoliopsida/genética , América do Sul
8.
New Phytol ; 235(3): 898-906, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590489

RESUMO

The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits of Lantana strigocamara and compare it with a similar structure in Viburnum tinus fruits. We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure in L. strigocamara. We also examine the development of the structure during maturation. We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets of c.105 nm that form a plate-like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers. Lantana strigocamara is the second origin of a lipid-based photonic structure, convergently evolved with the structure in Viburnum tinus. Chemical differences between the lipids in L. strigocamara and those of V. tinus suggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.


Assuntos
Lantana , Viburnum , Cor , Frutas/química , Lantana/química , Lipídeos/análise , Viburnum/química
9.
Mol Phylogenet Evol ; 154: 106961, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956799

RESUMO

Heliamphora is a genus of carnivorous pitcher plants endemic to the Guiana Highlands with fragmented distributions. We present a well resolved, time-calibrated, and comprehensive Heliamphora phylogeny estimated using Bayesian inference and maximum likelihood based on nuclear genes (26S, ITS, and PHYC) and secondary calibration. We used stochastic mapping to infer ancestral states of morphological characters and ecological traits. Our ancestral state estimations revealed that the pitcher drainage structures characteristic of the genus transformed from a hole to a slit in single clade, while other features (scape pubescence and hammock-like growth) have been gained and lost multiple times. Habitat was similarly labile in Heliamphora, with multiple transitions from the ancestral highland habitats into the lowlands. Using a Mantel test, we found closely related species tend to be geographically closely distributed. Placing our phylogeny in a historical context, major clades likely emerged through both vicariance and dispersal during the Miocene with more recent diversification driven by vertical displacement during the Pleistocene glacial-interglacial thermal oscillations. Despite the dynamic climatic history experienced by Heliamphora, the temperature changes brought by global warming pose a significant threat, particularly for those species at the highest elevations.


Assuntos
Filogenia , Filogeografia , Sarraceniaceae/classificação , Áreas Alagadas , Teorema de Bayes , Funções Verossimilhança , Modelos Biológicos , Nucleotídeos/genética , Fenótipo , América do Sul
10.
Dev Dyn ; 248(11): 1091-1100, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31269317

RESUMO

BACKGROUND: Convergent phenotypic evolution has been widely documented across timescales, from populations, to species, to major lineages. The extent to which convergent phenotypes arise from convergent genetic and developmental mechanisms remains an open question, although studies to-date reveal examples of both similar and different underlying mechanisms. This variation likely relates to a range of factors, including the genetic architecture of the trait and selective filtering of mutations over time. Here we focus on floral pigmentation, and examine the degree of developmental convergence between white-flowered lineages and white morphs within pigmented species. RESULTS: Using the model clade Iochrominae, we find that white morphs and white-flowered species are biochemically convergent, sharing an absence of colorful anthocyanin pigments. Regression analyses suggest that the expression levels of upstream genes are the strongest drivers of total pigmentation across species, although white species also show sharp down-regulation of the downstream genes. The white morphs do not share this pattern and present overall expression profiles more similar to the pigmented species. CONCLUSIONS: These results suggest that the mechanisms underlying variation within populations differ from those which give rise to fixed differences between species. Future work will aim to uncover the genetic changes responsible for this developmental non-convergence.


Assuntos
Antocianinas , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Pigmentação/fisiologia , Desenvolvimento Vegetal/fisiologia , Locos de Características Quantitativas , Antocianinas/genética , Antocianinas/metabolismo , Mutação , Especificidade da Espécie
11.
Mol Biol Evol ; 35(9): 2159-2169, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878153

RESUMO

The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of seven key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr, and Ans). Transitions between pigment types affecting floral hue (e.g., blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.


Assuntos
Antocianinas/genética , Evolução Biológica , Pigmentação/genética , Solanaceae/genética , Antocianinas/metabolismo , Flores/metabolismo , Solanaceae/metabolismo
12.
Am J Bot ; 106(5): 667-678, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059141

RESUMO

PREMISE: The distributions of plant clades are shaped by abiotic and biotic factors as well as historical aspects such as center of origin. Dispersals between distant areas may lead to niche evolution when lineages are established in new environments. Alternatively, dispersing lineages may exhibit niche conservatism, moving between areas with similar environmental conditions. Here we test these contrasting hypotheses in the Datureae clade (Solanaceae). METHODS: We used maximum likelihood methods to estimate the ancestral range of Datureae along with the history of biogeographic events. We then characterized the niche of each taxon using climatic and soil variables and tested for shifts in environmental niche optima. Finally, we examined how these shifts relate to the niche breadth of taxa and clades within Datureae and the degree of overlap between them. RESULTS: Datureae originated in the Andes and subsequently expanded its range to North America and non-Andean regions of South America. The ancestral niche, and that of most Datura and Trompettia species, is dry, while Brugmansia species likely shifted toward a more mesic environment. Nonetheless, most Datureae present moderate to high overlap in niche breadth today. CONCLUSIONS: The expansion of Datureae into North America was associated with niche conservatism, with dispersal into similarly dry areas as occupied by the ancestral lineage. Subsequent niche evolution, including the apparent shift to a mesic niche in Brugmansia, diversified the range of habitats occupied by species in the tribe Datureae but also led to significant niche overlap among the three genera.


Assuntos
Evolução Biológica , Ecossistema , Dispersão Vegetal , Solanaceae/fisiologia , América do Norte , América do Sul
13.
Am J Bot ; 106(2): 270-279, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779447

RESUMO

PREMISE OF THE STUDY: The evolution of novel fruit morphologies has been integral to the success of angiosperms. The inflated fruiting calyx, in which the balloon-like calyx swells to completely surround the fruit, has evolved repeatedly across angiosperms and is postulated to aid in protection and dispersal. We investigated the evolution of this trait in the tomatillos and their allies (Physalideae, Solanaceae). METHODS: The Physalideae phylogeny was estimated using four regions (ITS, LEAFY, trnL-F, waxy) with maximum likelihood (ML) and Bayesian inference. Under the best-fitting ML model of trait evolution, we estimated ancestral states along with the numbers of gains and losses of fruiting calyx accrescence and inflation with Bayesian stochastic mapping. Also, phylogenetic signal in calyx morphology was examined with two metrics (parsimony score and Fritz and Purvis's D). KEY RESULTS: Based on our well-resolved and densely sampled phylogeny, we infer that calyx evolution has proceeded in a stepwise and directional fashion, from non-accrescent to accrescent to inflated. In total, we inferred 24 gains of accrescence, 24 subsequent transitions to a fully inflated calyx, and only two reversals. Despite this lability, fruiting calyx accrescence and inflation showed strong phylogenetic signal. CONCLUSIONS: Our phylogeny greatly improves the resolution of Physalideae and highlights the need for taxonomic work. The comparative analyses reveal that the inflated fruiting calyx has evolved many times and that the trajectory toward this phenotype is generally stepwise and irreversible. These results provide a strong foundation for studying the genetic and developmental mechanisms responsible for the repeated origins of this charismatic fruit trait.


Assuntos
Flores/genética , Filogenia , Solanaceae/genética
14.
New Phytol ; 217(3): 1346-1356, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023752

RESUMO

Losses of floral pigmentation represent one of the most common evolutionary transitions in flower color, yet the genetic basis for these changes has been elucidated in only a handful of cases. Here we used crossing studies, bulk-segregant RNA sequencing, phylogenetic analyses and functional tests to identify the gene(s) responsible for the transition to white flowers in Iochroma loxense. Crosses between I. loxense and its blue-flowered sister species, I. cyaneum, suggested that a single locus controls the flower color difference and that the white allele causes a nearly complete loss of pigmentation. Examining sequence variation across phenotypic pools from the crosses, we found that alleles at a novel R3 MYB transcription factor were tightly associated with flower color variation. This gene, which we term MYBL1, falls into a class of MYB transcriptional repressors and, accordingly, higher expression of this gene is associated with downregulation of multiple anthocyanin pigment pathway genes. We confirmed the repressive function of MYBL1 through stable transformation of Nicotiana. The mechanism underlying the evolution of white flowers in I. loxense differs from that uncovered in previous studies, pointing to multiple mechanisms for achieving fixed transitions in flower color intensity.


Assuntos
Flores/fisiologia , Pigmentação , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Solanaceae/fisiologia , Sequência de Aminoácidos , Antocianinas/metabolismo , Teorema de Bayes , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Flores/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Modelos Biológicos , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Solanaceae/genética , Nicotiana/metabolismo
15.
Mol Phylogenet Evol ; 123: 26-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29432851

RESUMO

Advances in sequencing technology have made it possible to produce large multi-locus datasets required for species tree analyses. One challenge with constructing high throughput sequencing datasets, however, is that missing information is propagated at different steps in the sequence preparation process. To date, species tree studies have focused on filtering and removing errors that occur at particular loci. Given the way that high throughput sequencing datasets are constructed, however, large amounts of error or ambiguity may also manifest across individuals. Here we use a novel tree-based multivariate clustering method to identify and remove individuals with low phylogenetic signal in a nuclear sequence capture dataset for the Iochrominae clade (Solanaceae). Our results suggest that the low quality tips are the result of the library preparation process (e.g. unequal pooling) rather than poor capture due to phylogenetic distance from the reference species. After implementing the clustering approach and removing low quality tips, we construct an Iochrominae species tree that resolves a number of unknown relationships. We propose this pipeline as a valuable tool for species tree reconstruction with phylogenomic datasets containing variable levels of missing data.


Assuntos
Filogenia , Solanaceae/classificação , Solanaceae/genética , Sequência de Bases , Análise por Conglomerados , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Funções Verossimilhança , Análise de Sequência de DNA , Especificidade da Espécie
16.
J Evol Biol ; 31(12): 1863-1875, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30256485

RESUMO

Traits that have arisen multiple times yet still remain rare present a curious paradox. A number of these rare traits show a distinct tippy pattern, where they appear widely dispersed across a phylogeny, are associated with short branches and differ between recently diverged sister species. This phylogenetic pattern has classically been attributed to the trait being an evolutionary dead end, where the trait arises due to some short-term evolutionary advantage, but it ultimately leads species to extinction. While the higher extinction rate associated with a dead end trait could produce such a tippy pattern, a similar pattern could appear if lineages with the trait speciated slower than other lineages, or if the trait was lost more often that it was gained. In this study, we quantify the degree of tippiness of red flowers in the tomato family, Solanaceae, and investigate the macroevolutionary processes that could explain the sparse phylogenetic distribution of this trait. Using a suite of metrics, we confirm that red-flowered lineages are significantly overdispersed across the tree and form smaller clades than expected under a null model. Next, we fit 22 alternative models using HiSSE (Hidden State Speciation and Extinction), which accommodates asymmetries in speciation, extinction and transition rates that depend on observed and unobserved (hidden) character states. Results of the model fitting indicated significant variation in diversification rates across the family, which is best explained by the inclusion of hidden states. Our best fitting model differs between the maximum clade credibility tree and when incorporating phylogenetic uncertainty, suggesting that the extreme tippiness and rarity of red Solanaceae flowers makes it difficult to distinguish among different underlying processes. However, both of the best models strongly support a bias towards the loss of red flowers. The best fitting HiSSE model when incorporating phylogenetic uncertainty lends some support to the hypothesis that lineages with red flowers exhibit reduced diversification rates due to elevated extinction rates. Future studies employing simulations or targeting population-level processes may allow us to determine whether red flowers in Solanaceae or other angiosperms clades are rare and tippy due to a combination of processes, or asymmetrical transitions alone.


Assuntos
Evolução Biológica , Flores , Especiação Genética , Pigmentação , Solanaceae/genética , Solanaceae/fisiologia , Extinção Biológica , Variação Genética , Modelos Biológicos
18.
Am J Bot ; 104(1): 92-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28057690

RESUMO

PREMISE OF THE STUDY: Both polyploidy and shifts in floral color have marked angiosperm evolution. Here, we investigate the biochemical basis of the novel and diverse floral phenotypes seen in allopolyploids in Nicotiana (Solanaceae) and examine the extent to which the merging of distinct genomes alters flavonoid pigment production. METHODS: We analyzed flavonol and anthocyanin pigments from Nicotiana allopolyploids of different ages (N. tabacum, 0.2 million years old; several species from Nicotiana section Repandae, 4.5 million years old; and five lines of first-generation synthetic N. tabacum) as well as their diploid progenitors. KEY RESULTS: Allopolyploid floral pigment profiles tend not to overlap with their progenitors or related allopolyploids, and allopolyploids produce transgressive pigments that are not present in either progenitor. Differences in floral color among N. tabacum accessions seems mainly to be due to variation in cyanidin concentration, but changes in flavonol concentrations among accessions are also present. CONCLUSIONS: Competition for substrates within the flavonoid biosynthetic pathway to make either flavonols or anthocyanins may drive the differences seen among related allopolyploids. Some of the pigment differences observed in allopolyploids may be associated with making flowers more visible to nocturnal pollinators.


Assuntos
Flores/genética , Nicotiana/genética , Pigmentação/genética , Poliploidia , Antocianinas/metabolismo , Vias Biossintéticas/genética , Cor , Flavonoides/metabolismo , Flores/metabolismo , Fenótipo , Pigmentos Biológicos/metabolismo , Especificidade da Espécie , Nicotiana/classificação , Nicotiana/metabolismo
19.
BMC Evol Biol ; 16: 98, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161359

RESUMO

BACKGROUND: Phenotypic transitions, such as trait gain or loss, are predicted to carry evolutionary consequences for the genes that control their development. For example, trait losses can result in molecular decay of the pathways underlying the trait. Focusing on the Iochrominae clade (Solanaceae), we examine how repeated losses of floral anthocyanin pigmentation associated with flower color transitions have affected the molecular evolution of three anthocyanin pathway genes (Chi, F3h, and Dfr). RESULTS: We recovered intact coding regions for the three genes in all of the lineages that have lost floral pigmentation, suggesting that molecular decay is not associated with these flower color transitions. However, two of the three genes (Chi, F3h) show significantly elevated dN/dS ratios in lineages without floral pigmentation. Maximum likelihood analyses suggest that this increase is due to relaxed constraint on anthocyanin genes in the unpigmented lineages as opposed to positive selection. Despite the increase, the values for dN/dS in both pigmented and unpigmented lineages were consistent overall with purifying selection acting on these loci. CONCLUSIONS: The broad conservation of anthocyanin pathway genes across lineages with and without floral anthocyanins is consistent with the growing consensus that losses of pigmentation are largely achieved by changes in gene expression as opposed to structural mutations. Moreover, this conservation maintains the potential for regain of flower color, and indicates that evolutionary losses of floral pigmentation may be readily reversible.


Assuntos
Antocianinas/genética , Flores/genética , Solanaceae/genética , Evolução Molecular , Genes de Plantas , Mutação , Fenótipo , Pigmentação/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa