Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 117(3): 119-27, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19161346

RESUMO

The rise in blood glucose after lunch is less if breakfast has been eaten. The metabolic basis of this second-meal phenomenon remains uncertain. We hypothesized that storage of ingested glucose as glycogen could be responsible during the post-meal suppression of plasma NEFAs (non-esterified fatty acids; 'free' fatty acids). In the present study we determined the metabolic basis of the second-meal phenomenon. Healthy subjects were studied on two separate days, with breakfast and without breakfast in a random order. We studied metabolic changes after a standardized test lunch labelled with 3 g of 13C-labelled (99%) glucose. Changes in post-prandial muscle glycogen storage were measured using 13C magnetic resonance spectroscopy. The rise in plasma glucose after lunch was significantly less if breakfast had been taken (0.9+/-0.3 compared with 3.2+/-0.3 mmol/l, with and without breakfast respectively; P<0.001), despite comparable insulin responses. Pre-lunch NEFAs were suppressed after breakfast (0.13+/-0.03 compared with 0.51+/-0.04 mmol/l) and levels correlated positively with the maximum glucose rise after lunch (r=0.62, P=0.001). The increase in muscle glycogen signal was greater 5 h after lunch on the breakfast day (103+/-21 compared with 48+/-12 units; P<0.007) and correlated negatively with plasma NEFA concentrations before lunch (r=-0.48, P<0.05). The second-meal effect is associated with priming of muscle glycogen synthesis consequent upon sustained suppression of plasma NEFA concentrations.


Assuntos
Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Glicogênio/metabolismo , Músculo Quadríceps/metabolismo , Testes Respiratórios , Isótopos de Carbono/análise , Ácidos Graxos não Esterificados/metabolismo , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Pessoa de Meia-Idade , Período Pós-Prandial/fisiologia , Triglicerídeos/metabolismo
2.
PLoS Med ; 5(1): e27, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18232732

RESUMO

BACKGROUND: Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.36% of participants from a population of white individuals in the UK. However, the functional implications of the mutation were not known. The objective of this study was to characterise the molecular and physiological consequences of this genetic variant. METHODS AND FINDINGS: In this study we found a similar prevalence of the variant in an independent UK white population of 744 participants (1.46%) and, using in vivo (13)C magnetic resonance spectroscopy studies, demonstrate that human carriers (n = 6) of the variant have low basal (65% lower, p = 0.002) and postprandial muscle glycogen levels. Mice engineered to express the equivalent mutation had similarly decreased muscle glycogen levels (40% lower in heterozygous knock-in mice, p < 0.05). In muscle tissue from these mice, failure of the truncated mutant to bind glycogen and colocalize with glycogen synthase (GS) decreased GS and increased glycogen phosphorylase activity states, which account for the decreased glycogen content. CONCLUSIONS: Thus, PPP1R3A C1984DeltaAG (stop codon 668) is, to our knowledge, the first prevalent mutation described that directly impairs glycogen synthesis and decreases glycogen levels in human skeletal muscle. The fact that it is present in approximately 1 in 70 UK whites increases the potential biomedical relevance of these observations.


Assuntos
Códon sem Sentido , Mutação da Fase de Leitura , Glicogênio/biossíntese , Músculo Esquelético/enzimologia , Fosfoproteínas Fosfatases/fisiologia , Adulto , Animais , Diabetes Mellitus Tipo 2/enzimologia , Feminino , Frequência do Gene , Glicogênio/análise , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Esquelético/química , Fosfoproteínas Fosfatases/genética , Período Pós-Prandial , Relação Estrutura-Atividade , Reino Unido , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa