Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 955-967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265572

RESUMO

Mastitis caused by Staphylococcus aureus is a worldwide problem in dairy farms, in part because of the pathogenicity of the bacteria, biofilm formation, and mechanisms of antimicrobial resistance that make the disease difficult to diagnose and treat, which is typically done with the use of beta-lactam antibiotics. The aim of the present study was to determine the virulence and resistance factors of S. aureus isolates from subclinical mastitis, blaZ + /mecA - /mecC - , resistant and sensitive to oxacillin. All isolates were classified as CC97 by MLST analysis, a clonal complex well adapted to the mammary gland and although STAU23 and STAU73 were resistant to oxacillin while STAU32 and STAU78 were sensitive, the genomic analysis identified only the blaZ operon corresponding to resistance to beta-lactams. However, the presence of the sdrC gene was revealed exclusively in resistant isolates, an important adhesin in the colonization process that potentiates pathogenicity in S. aureus. In addition, resistance islands (REIs) were identified in these isolates, suggesting more conserved REIs. In the analysis of SNPs throughout the genome, mutations were found in the trmB and smpB genes of the resistant isolates and in the murD and rimM genes of the sensitive isolates. This study highlights the potential benefit of genome-wide characterization tools to identify molecular mechanisms of S. aureus in bovine mastitis.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Virulência/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Oxacilina
2.
Braz J Microbiol ; 54(2): 1191-1202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807089

RESUMO

Pisciculture represents one of the industries with the fastest growth rates worldwide. However, it presents obstacles to its development, such as bacteriosis, which is conventionally treated with antibiotics. The indiscriminate and inappropriate use of antibiotics can lead to bacterial resistance, thus alternatives to the use of antibiotics have been researched. The study aimed to analyze the potential of crude ethanol extract (CEE) from Hymenaea martiana leaf, gallic acid (GA), and polypyrrole (PPy) against Aeromonas hydrophila. Tests were performed to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compounds individually and in synergy (checkerboard) against A. hydrophila and in silico tests between the compounds evaluated. The CEE of H. martiana leaf and PPy were effective against A. hydrophila with MBC results of 3125 µg/mL for the CEE of H. martiana and 125 µg/mL for PPy. Evaluating the GA, a MIC and MBC of 125 µg/mL was obtained. In the interaction tests (checkerboard, using PPy/CEE and PPy/GA), there was a significant reduction in individual introductions. Thus, for the PPy/CEE tests, we had a reduction of MIC/MBC to 1.95 and 781.25 µg/mL, and for the synergy tests between PPy/GA to 7.8125 and 31.125 µg/mL, respectively. The synergy tests are encouraging, and it is possible to verify a decrease of up to 98% in the introduction of PPy, 75% in CEE for H. martiana and 75.1% for GA, when compared to their individual tests. The tests with GA are encouraging due to GA's effectiveness as an antimicrobial agent and high synergy with polypyrrole, both in vitro results and molecular docking experiments showed the actions at the same activation site in A. hydrophila. In vivo tests evaluating isolated components of CEE from H. martiana in synergy with PPy should be performed, to verify the quality of the interactions and the improvement of the immune responses of the animals. It was evidenced that gallic acid, a substance isolated from the extract, tends to have more promising results. This is relevant since the industry has been developing these compounds for different uses, thus providing easier access to the product. Thus, the present study indicates an efficient alternative in the use of bioactive compounds as substitutes for conventional antimicrobials.


Assuntos
Anti-Infecciosos , Hymenaea , Animais , Polímeros , Ácido Gálico/farmacologia , Etanol/farmacologia , Aeromonas hydrophila , Pirróis/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa