Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961303

RESUMO

Mass is commonly considered an intrinsic property of matter, but modern physics reveals particle masses to have complex origins1, such as the Higgs mechanism in high-energy physics2,3. In crystal lattices such as graphene, relativistic Dirac particles can exist as low-energy quasiparticles4 with masses imparted by lattice symmetry-breaking perturbations5-8. These mass-generating mechanisms all assume Hermiticity, or the conservation of energy in detail. Using a photonic synthetic lattice, we show experimentally that Dirac masses can be generated by means of non-Hermitian perturbations based on optical gain and loss. We then explore how the spacetime engineering of the gain and loss-induced Dirac mass affects the quasiparticles. As we show, the quasiparticles undergo Klein tunnelling at spatial boundaries, but a local breaking of a non-Hermitian symmetry can produce a new flux non-conservation effect at the domain walls. At a temporal boundary that abruptly flips the sign of the Dirac mass, we observe a variant of the time-reflection phenomenon: in the non-relativistic limit, the Dirac quasiparticle reverses its velocity, whereas in the relativistic limit, the original velocity is retained.

2.
Chem Rev ; 123(8): 4416-4442, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36943013

RESUMO

Confinement of electromagnetic fields at the subwavelength scale via metamaterial paradigms is an established method to engineer light-matter interaction in most common material systems, from insulators to semiconductors and from metals to superconductors. In recent years, this approach has been extended to the realm of topological materials, providing a new avenue to access nontrivial features of their electronic band structure. In this review, we survey various topological material classes from a photonics standpoint, including crystal growth and lithographic structuring methods. We discuss how exotic electronic features such as spin-selective Dirac plasmon polaritons in topological insulators or hyperbolic plasmon polaritons in Weyl semimetals may give rise to unconventional magneto-optic, nonlinear, and circular photogalvanic effects in metamaterials across the visible to infrared spectrum. Finally, we dwell on how these effects may be dynamically controlled by applying external perturbations in the form of electric and magnetic fields or ultrafast optical pulses. Through these examples and future perspectives, we argue that topological insulator, semimetal and superconductor metamaterials are unique systems to bridge the missing links between nanophotonic, electronic, and spintronic technologies.

3.
Nano Lett ; 23(10): 4431-4438, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37129264

RESUMO

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.

4.
Nano Lett ; 20(11): 7906-7911, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090800

RESUMO

Metal-halide perovskites are rapidly emerging as solution-processable optical materials for light-emitting applications. Here, we adopt a plasmonic metamaterial approach to enhance photoluminescence emission and extraction of methylammonium lead iodide (MAPbI3) thin films based on the Purcell effect. We show that hybridization of the active metal-halide film with resonant nanoscale sized slits carved into a gold film can yield more than 1 order of magnitude enhancement of luminescence intensity and nearly 3-fold reduction of luminescence lifetime corresponding to a Purcell enhancement factor of more than 300. These results show the effectiveness of resonant nanostructures in controlling metal-halide perovskite light emission properties over a tunable spectral range, a viable approach toward highly efficient perovskite light-emitting devices and single-photon emitters.

5.
Nano Lett ; 20(11): 7964-7972, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054225

RESUMO

Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS2 multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS2. The atomic thin MoS2 significantly facilitates high transmission of the sieved photons and high-fidelity nanofabrication. A proof-of-concept two-dimensional (2D) nanosieve hologram exhibits 10-fold enhanced efficiency compared with its non-2D counterparts. Furthermore, a supercritical 2D lens with its focal spot breaking diffraction limit is developed to exhibit experimentally far-field label-free aberrationless imaging with a resolution of ∼0.44λ at λ = 450 nm in air. This transition-metal-dichalcogenide (TMDC) photonic platform opens new opportunities toward future 2D meta-optics and nanophotonics.

6.
Opt Lett ; 45(10): 2740-2743, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412455

RESUMO

Coherent optical fiber networks are extremely sensitive to thermal, mechanical, and acoustic noise, which requires elaborate schemes of phase stabilization with dedicated auxiliary lasers, multiplexers, and photodetectors. This is particularly demanding in quantum networks operating at the single-photon level. Here, we propose a simple method of phase stabilization based on single-photon counting and apply it to quantum fiber networks implementing single-photon interference on a lossless beamsplitter and coherent perfect absorption on a metamaterial absorber. As a proof of principle, we show dissipative single-photon switching with visibility close to 80%. This method can be employed in quantum networks of greater complexity without classical stabilization rigs, potentially increasing efficiency of the quantum channels.

7.
Chembiochem ; 20(4): 532-536, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29715376

RESUMO

In this work the photophysics of poly(3-hexylthiophene) nanoparticles (NPs) is investigated in the context of their biological applications. The NPs, made as colloidal suspensions in aqueous buffers, present a distinct absorption band in the low-energy region. On the basis of systematic analysis of absorption and transient absorption (TA) spectra taken under different pH conditions, this band is associated with charge-transfer states generated by the polarization of loosely bound polymer chains and originating from complexes formed with electron-withdrawing species. Importantly, the ground-state depletion of these states upon photoexcitation is active even on microsecond timescales, thus suggesting that they act as precursor states for long-living polarons; this could be beneficial for cellular stimulation. Preliminary transient absorption microscopy results for NPs internalized within the cells reveal the presence of long-living species, further substantiating their relevance in biointerfaces.


Assuntos
Nanopartículas/química , Polímeros/química , Tiofenos/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Microscopia , Espectrofotometria
8.
Opt Express ; 26(2): 702-710, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401952

RESUMO

Cognitive photonic networks are researched to efficiently solve computationally hard problems. Flexible fabrication techniques for the implementation of such networks into compact and scalable chips are desirable for the study of new optical computing schemes and algorithm optimization. Here we demonstrate a femtosecond laser-written optical oracle based on cascaded directional couplers in glass, for the solution of the Hamiltonian path problem. By interrogating the integrated photonic chip with ultrashort laser pulses, we were able to distinguish the different paths traveled by light pulses, and thus infer the existence or the absence of the Hamiltonian path in the network by using an optical correlator. This work proves that graph theory problems may be easily implemented in integrated photonic networks, down scaling the net size and speeding up execution times.

9.
Chemphyschem ; 19(9): 1075-1080, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29297203

RESUMO

Metal halide perovskites have demonstrated breakthrough performances as absorber and emitter materials for photovoltaic and display applications respectively. However, despite the low manufacturing cost associated with solution-based processing, the propensity for defect formation with this technique has led to an increasing need for defect passivation. Here, we present an inexpensive and facile method to remedy surface defects through a postdeposition treatment process using branched alkylammonium cation species. The simultaneous realignment of interfacial energy levels upon incorporation of tetraethylammonium bromide onto the surface of CH3 NH3 PbBr3 films contributes favorably toward the enhancement in overall light-emitting diode characteristics, achieving maximum luminance, current efficiency, and external quantum efficiency values of 11 000 cd m-2 , 0.68 cd A-1 , and 0.16 %, respectively.

10.
Nano Lett ; 17(5): 2757-2764, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28384403

RESUMO

We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.


Assuntos
Nanofios/química , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Microeletrodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Tamanho da Partícula , Ratos
11.
J Am Chem Soc ; 139(1): 39-42, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28024394

RESUMO

Only a selected group of two-dimensional (2D) lead-halide perovskites shows a peculiar broad-band photoluminescence. Here we show that the structural distortions of the perovskite lattice can determine the defectivity of the material by modulating the defect formation energies. By selecting and comparing two archetype systems, namely, (NBT)2PbI4 and (EDBE)PbI4 perovskites (NBT = n-butylammonium and EDBE = 2,2-(ethylenedioxy)bis(ethylammonium)), we find that only the latter, subject to larger deformation of the Pb-X bond length and X-Pb-X bond angles, sees the formation of VF color centers whose radiative decay ultimately leads to broadened PL. These findings highlight the importance of structural engineering to control the optoelectronic properties of this class of soft materials.

12.
Inorg Chem ; 55(3): 1044-52, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26756860

RESUMO

Despite their extremely good performance in solar cells with efficiencies approaching 20% and the emerging application for light-emitting devices, organic-inorganic lead halide perovskites suffer from high content of toxic, polluting, and bioaccumulative Pb, which may eventually hamper their commercialization. Here, we present the synthesis of two-dimensional (2D) Cu-based hybrid perovskites and study their optoelectronic properties to investigate their potential application in solar cells and light-emitting devices, providing a new environmental-friendly alternative to Pb. The series (CH3NH3)2CuCl(x)Br(4-x) was studied in detail, with the role of Cl found to be essential for stabilization. By exploiting the additional Cu d-d transitions and appropriately tuning the Br/Cl ratio, which affects ligand-to-metal charge transfer transitions, the optical absorption in this series of compounds can be extended to the near-infrared for optimal spectral overlap with the solar irradiance. In situ formation of Cu(+) ions was found to be responsible for the green photoluminescence of this material set. Processing conditions for integrating Cu-based perovskites into photovoltaic device architectures, as well as the factors currently limiting photovoltaic performance, are discussed: among them, we identified the combination of low absorption coefficient and heavy mass of the holes as main limitations for the solar cell efficiency. To the best of our knowledge, this is the first demonstration of the potential of 2D copper perovskite as light harvesters and lays the foundation for further development of perovskite based on transition metals as alternative lead-free materials. Appropriate molecular design will be necessary to improve the material's properties and solar cell performance filling the gap with the state-of-the-art Pb-based perovskite devices.

13.
Phys Chem Chem Phys ; 18(45): 31107-31114, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27812574

RESUMO

Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states. Here, we investigate MEG QY and the origin of the photon energy threshold for MEG in PbSe QDs of three different sizes by studying the transient absorption (TA) spectra, both at the band gap (near infrared, NIR) and far from the band gap energy (visible range). The comparison of visible TA spectra and dynamics for different pump wavelengths, below, around and above the MEG threshold, provides evidence of the role of the Σ transition in slowing down the exciton cooling process that can help MEG to take over the phonon relaxation process. The universality of this behavior is confirmed by studying QDs of three different sizes. Moreover, our results suggest that MEG QY can be determined by pump-probe experiments probed above the band gap.

14.
Nano Lett ; 15(8): 5382-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26168373

RESUMO

We propose and demonstrate a novel type of coupling between polarons in a conjugated polymer and localized surface plasmons in infrared (IR) nanoantennas. The near-field interaction between plasmons and polarons is revealed by polarized photoinduced absorption measurements, probing mid-IR polaron transitions, and infrared-active vibrational modes of the polymer, which directly gauge the density of photogenerated charge carriers. This work proves the possibility of tuning the polaronic properties of organic semiconductors with plasmonic nanostructures.

15.
Chemistry ; 21(43): 15113-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26333387

RESUMO

A novel hole-transporting molecule (F101) based on a furan core has been synthesized by means of a short, high-yielding route. When used as the hole-transporting material (HTM) in mesoporous methylammonium lead halide perovskite solar cells (PSCs) it produced better device performance than the current state-of-the-art HTM 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). The F101-HTM-based device exhibited both slightly higher Jsc (19.63 vs. 18.41 mA cm(-2) ) and Voc (1.1 vs. 1.05 V) resulting in a marginally higher power conversion efficiency (PCE) (13.1 vs. 13 %). The steady-state and time-resolved photoluminescence show that F101 has significant charge extraction ability. The simple molecular structure, short synthesis route with high yield and better performance in devices makes F101 an excellent candidate for replacing the expensive spiro-OMeTAD as HTM in PSCs.

16.
Nano Lett ; 14(5): 2688-93, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678794

RESUMO

We demonstrate an efficient core-shell GaAs/AlGaAs nanowire photodetector operating at room temperature. The design of this nanoscale detector is based on a type-I heterostructure combined with a metal-semiconductor-metal (MSM) radial architecture, in which built-in electric fields at the semiconductor heterointerface and at the metal/semiconductor Schottky contact promote photogenerated charge separation, enhancing photosensitivity. The spectral photoconductive response shows that the nanowire supports resonant optical modes in the near-infrared region, which lead to large photocurrent density in agreement with the predictions of electromagnetic and transport computational models. The single nanowire photodetector shows a remarkable peak photoresponsivity of 0.57 A/W, comparable to large-area planar GaAs photodetectors on the market, and a high detectivity of 7.2 × 10(10) cm·Hz(1/2)/W at λ = 855 nm. This is promising for the design of a new generation of highly sensitive single nanowire photodetectors by controlling the optical mode confinement, bandgap, density of states, and electrode engineering.

17.
Nano Lett ; 14(9): 5162-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25088185

RESUMO

Plasmonic spectra of "nanoclock" metamaterials can be topologically mapped on a torus. We manufactured arrays of such a metamaterial with different "time" shown on the clocks and demonstrated that the near-infrared spectra of the nanostructures can be predictably tuned exhibiting a rich series of high-order plasmon modes, from the electric dipole to exotic electric triakontadipole that could be engaged in chemo/biosensor applications.

18.
Opt Express ; 22(1): 295-304, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24514991

RESUMO

With this paper we bring about a discussion on the computing potential of complex optical networks and provide experimental demonstration that an optical fiber network can be used as an analog processor to calculate matrix inversion. A 3x3 matrix is inverted as a proof-of-concept demonstration using a fiber network containing three nodes and operating at telecomm wavelength. For an NxN matrix, the overall solving time (including setting time of the matrix elements and calculation time of inversion) scales as O(N(2)), whereas matrix inversion by most advanced computer algorithms requires ~O(N(2.37)) computational time. For well-conditioned matrices, the error of the inversion performed optically is found to be around 3%, limited by the accuracy of measurement equipment.


Assuntos
Algoritmos , Redes de Comunicação de Computadores/instrumentação , Modelos Teóricos , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
19.
J Chem Phys ; 138(18): 184508, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23676057

RESUMO

The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm∕GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.


Assuntos
Naftacenos/química , Fótons , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Análise Espectral
20.
Nat Commun ; 14(1): 1433, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918559

RESUMO

Various topological laser concepts have recently enabled the demonstration of robust light-emitting devices that are immune to structural deformations and tolerant to fabrication imperfections. Current realizations of photonic cavities with topological boundaries are often limited by outcoupling issues or poor directionality and require complex design and fabrication that hinder operation at small wavelengths. Here we propose a topological cavity design based on interface states between two one-dimensional photonic crystals with distinct Zak phases. Using a few monolayers of solution-processed all-inorganic cesium lead halide perovskite quantum dots as the ultrathin gain medium, we demonstrate a lithography-free, vertical-emitting, low-threshold, and single-mode laser emitting in the green. We show that the topological laser, akin to vertical-cavity surface-emitting lasers (VCSELs), is robust against local perturbations of the multilayer structure. We argue that the design simplicity and reduction of the gain medium thickness enabled by the topological cavity make this architecture suitable for low-cost and efficient quantum dot vertical emitting lasers operating across the visible spectral region.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa