Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microb Ecol ; 87(1): 32, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228918

RESUMO

Alders are nitrogen (N)-fixing riparian trees that promote leaf litter decomposition in streams through their high-nutrient leaf litter inputs. While alders are widespread across Europe, their populations are at risk due to infection by the oomycete Phytophthora ×alni, which causes alder dieback. Moreover, alder death opens a space for the establishment of an aggressive N-fixing invasive species, the black locust (Robinia pseudoacacia). Shifts from riparian vegetation containing healthy to infected alder and, eventually, alder loss and replacement with black locust may alter the key process of leaf litter decomposition and associated microbial decomposer assemblages. We examined this question in a microcosm experiment comparing three types of leaf litter mixtures: one representing an original riparian forest composed of healthy alder (Alnus lusitanica), ash (Fraxinus angustifolia), and poplar (Populus nigra); one with the same species composition where alder had been infected by P. ×alni; and one where alder had been replaced with black locust. The experiment lasted six weeks, and every two weeks, microbially driven decomposition, fungal biomass, reproduction, and assemblage structure were measured. Decomposition was highest in mixtures with infected alder and lowest in mixtures with black locust, reflecting differences in leaf nutrient concentrations. Mixtures with alder showed distinct fungal assemblages and higher sporulation rates than mixtures with black locust. Our results indicate that alder loss and its replacement with black locust may alter key stream ecosystem processes and assemblages, with important changes already occurring during alder infection. This highlights the importance of maintaining heathy riparian forests to preserve proper stream ecosystem functioning.


Assuntos
Alnus , Ecossistema , Árvores , Rios/microbiologia , Biomassa , Nitrogênio , Folhas de Planta/microbiologia , Alnus/microbiologia
2.
New For (Dordr) ; 54(4): 661-696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361260

RESUMO

Dutch elm disease (DED) is a vascular wilt disease caused by the pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi with multiple ecological phases including pathogenic (xylem), saprotrophic (bark) and vector (beetle flight and beetle feeding wound) phases. Due to the two DED pandemics during the twentieth century the use of elms in landscape and forest restoration has declined significantly. However new initiatives for elm breeding and restoration are now underway in Europe and North America. Here we discuss complexities in the DED 'system' that can lead to unintended consequences during elm breeding and some of the wider options for obtaining durability or 'field resistance' in released material, including (1) the phenotypic plasticity of disease levels in resistant cultivars infected by O. novo-ulmi; (2) shortcomings in test methods when selecting for resistance; (3) the implications of rapid evolutionary changes in current O. novo-ulmi populations for the choice of pathogen inoculum when screening; (4) the possibility of using active resistance to the pathogen in the beetle feeding wound, and low attractiveness of elm cultivars to feeding beetles, in addition to resistance in the xylem; (5) the risk that genes from susceptible and exotic elms be introgressed into resistant cultivars; (6) risks posed by unintentional changes in the host microbiome; and (7) the biosecurity risks posed by resistant elm deployment. In addition, attention needs to be paid to the disease pressures within which resistant elms will be released. In the future, biotechnology may further enhance our understanding of the various resistance processes in elms and our potential to deploy trees with highly durable resistance in elm restoration. Hopefully the different elm resistance processes will prove to be largely under durable, additive, multigenic control. Elm breeding programmes cannot afford to get into the host-pathogen arms races that characterise some agricultural host-pathogen systems.

3.
New Phytol ; 235(6): 2237-2251, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35491749

RESUMO

Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.


Assuntos
Quercus , Adaptação Fisiológica , Mudança Climática , Quercus/fisiologia , Solo , Estresse Fisiológico , Árvores/fisiologia
4.
Plant Cell Environ ; 45(10): 2875-2897, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35864739

RESUMO

The number and intensity of flood events will likely increase in the future, raising the risk of flooding stress in terrestrial plants. Understanding flood effects on plant physiology and plant-associated microbes is key to alleviate flooding stress in sensitive species and ecosystems. Reduced oxygen supply is the main constrain to the plant and its associated microbiome. Hypoxic conditions hamper root aerobic respiration and, consequently, hydraulic conductance, nutrient uptake, and plant growth and development. Hypoxia favours the presence of anaerobic microbes in the rhizosphere and roots with potential negative effects to the plant due to their pathogenic behaviour or their soil denitrification ability. Moreover, plant physiological and metabolic changes induced by flooding stress may also cause dysbiotic changes in endosphere and rhizosphere microbial composition. The negative effects of flooding stress on the holobiont (i.e., the host plant and its associated microbiome) can be mitigated once the plant displays adaptive responses to increase oxygen uptake. Stress relief could also arise from the positive effect of certain beneficial microbes, such as mycorrhiza or dark septate endophytes. More research is needed to explore the spiralling, feedback flood responses of plant and microbes if we want to promote plant flood tolerance from a holobiont perspective.


Assuntos
Inundações , Microbiota , Microbiota/fisiologia , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Plantas , Rizosfera , Microbiologia do Solo
5.
Plant Dis ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167516

RESUMO

Cork oak (Quercus suber L.) is an evergreen tree native to SW Europe and NW Africa. It covers 2·106 ha in the western Mediterranean basin, forms heterogeneous forest ecosystems and represents an important source of income derived from cork production. While in Iberia, Italy, Tunisia and Algeria, drought and several endemic pathogens have been associated with cork oak decline (Moricca et al. 2016; Smahi et al. 2017), in Morocco there is no evidence, apart from overgrazing and human intervention (Fennane and Rejdali 2015), of a pathogen associated with oak decline. In December 2019, extensive dieback and mortality of 60-year-old cork oak trees were observed in a natural stand of ca 150 ha located 5 km east from Touazithe, in Maâmora forest, Morocco (34°13'38''N, 6°14'51''W - 87 m a.s.l.). Two years before, Q. suber seedlings from a local nursery were planted to increase tree density. Symptoms in trees and planted seedlings included chlorosis, reddish-brown discoloration of the whole crown and dieback starting in the upper crown. Root rot and lack of fine roots were observed. Tree mortality was estimated at ca 30%, and disease incidences of trees and seedlings were 45 and 70%, respectively. A Phytophthora species was consistently isolated from the rhizosphere of 3 symptomatic trees randomly selected at the site using leaves as bait (Jung et al. 1996). On carrot agar Phytophthora colonies were uniform and cottonwool-like. Sporangia were typically terminal, with ovoid, and obpyriform shape, mostly papillate, measuring 30.7 ± 4.7 µm length and 22.7 ± 4.1 µm wide. Oogonia were produced in single culture, and they were globose to subglobose, elongated to ellipsoid, 32.1 ± 2.9 µm in diameter and 46.1 ± 4.8 µm in length. Oospores were usually spherical, thick-walled, and measured 28.1 ± 2.4 µm. Antheridia were paragynous, mostly spherical, measuring 12.2 ± 1.4 µm. Isolates had minimum and maximum temperatures of 5 °C and 30 °C, respectively, and a growth optimum at 20 °C. Apart from the small size of sporangia, features were typical of Phytophthora quercina Jung. The identity of a representative strain (TJ1500) was corroborated by sequencing the ITS and mitochondrial cox1 gene regions, and BLAST search in GenBank showed 100% homology with sequences of the ex-type culture of P. quercina (KF358229 and KF358241 accessions, respectively). Both sequences of the representative isolate were submitted to GenBank (accessions OP086243 and OP290549). The strain TJ1500 is currently stored within the culture collections of the Mendel University in Brno and the University of Sassari. Its pathogenicity was verified and compared with a P. cinnamomi strain in a soil infestation test with one-year-old cork oak seedlings (Corcobado et al. 2017). Five months after inoculation, the symptoms described were observed in the seedlings, and fine root weight of plants inoculated with the TJ1500 strain and P. cinnamomi was reduced by 19 and 42%, respectively, in relation to non-inoculated controls. The pathogen was re-isolated from the necrotic roots, thus fulfilling Koch's postulates. So far, P. quercina has been reported associated with chronic mortality of cork oak in new plantations in Spain (Martín-García et al. 2015; Jung et al. 2016) and natural forests in Italy (Seddaiu et al. 2020). To our knowledge this is the first report of P. quercina in Morocco. Givenat Morocco is an important cork producing country, our finding warns about the risk this pathogen poses to Q. suber and other North African oaks.

6.
Physiol Plant ; 165(2): 319-329, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30294855

RESUMO

Sustainability of the Mediterranean forest is threatened by oak decline, a disease of holm oak and other Quercus species that is initiated by infection with the oomycete Phytophthora cinnamomi. Focusing on the role of tannins in the chemical defense of plants, this work investigated whether tannins content in Quercus ilex is regulated by biotic stress. Screening of published genomes allowed the identification of Quercus sequences encoding enzymes for early steps of the biosynthesis of phenolic compounds, like hydrolysable tannins and condensed tannins (CT) among others, plus genes involved in the late steps of CT biosynthesis. Four days after treatment of Q. ilex seedlings by mechanical defoliation, P. cinnamomi infection and both stressors simultaneously, mRNA concentrations for tannins biosynthesis enzymes were measured in leaves. Among the transcript amount for shikimate dehydrogenase (SDH, EC 1.1.1.25), anthocyanidin reductase (EC 1.3.1.77), anthocyanidin synthase (EC 1.14.11.19) and leucoanthocyanidine reductase (EC 1.17.1.3), defoliation induced gene expression for SDH2 isoenzyme. About 4 days after infection of roots by P. cinnamomi, this up-regulation was canceled and SDH enzyme activity decreased. Furthermore, during this late stage of biotrophic interaction the pathogen switched off the correlation engaged by defoliation between the expression of SDH1 and SDH2 encoding genes and chemical defenses corresponding to total tannins, which were down-regulated. Thus, tannins biosynthesis in seedlings of Q. ilex is induced after mechanical defoliation whereas infection by the pathogen interferes with this regulation, potentially increasing the susceptibility of plants to herbivory and aggravating the impact of biotic stress.


Assuntos
Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Quercus/microbiologia , Quercus/fisiologia , Estresse Fisiológico , Taninos/biossíntese , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Isoenzimas/metabolismo , Modelos Lineares , Filogenia , Doenças das Plantas/genética , Quercus/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Succinato Desidrogenase/metabolismo , Taninos/química
7.
Sci Total Environ ; : 173619, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.

8.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771639

RESUMO

The main threats to chestnut in Europe are climate change and emerging pathogens. Although many works have separately addressed the impacts on chestnut of elevated temperatures and Phytophthora cinnamomi Rands (Pc) infection, none have studied their combined effect. The objectives of this work were to describe the physiology, secondary metabolism and survival of 6-month-old C. sativa seedlings after plants were exposed to ambient temperature, high ambient temperature and heat wave events, and subsequent infection by Pc. Ten days after the warming scenarios, the biochemistry of plant leaves and roots was quantified and the recovery effect assessed. Plant growth and root biomass under high ambient temperature were significantly higher than in plants under ambient temperature and heat wave event. Seven secondary metabolite compounds in leaves and three in roots were altered significantly with temperature. Phenolic compounds typically decreased in response to increased temperature, whereas ellagic acid in roots was significantly more abundant in plants exposed to ambient and high ambient temperature than in plants subjected to heat waves. At recovery, leaf procyanidin and catechin remained downregulated in plants exposed to high ambient temperature. Mortality by Pc was fastest and highest in plants exposed to ambient temperature and lowest in plants under high ambient temperature. Changes in the secondary metabolite profile of plants in response to Pc were dependent on the warming scenarios plants were exposed to, with five compounds in leaves and three in roots showing a significant 'warming scenario' × 'Pc' interaction. The group of trees that best survived Pc infection was characterised by increased quercetin 3-O-glucuronide, 3-feruloylquinic acid, gallic acid ethyl ester and ellagic acid. To the best of our knowledge, this is the first study addressing the combined effects of global warming and Pc infection in chestnut.

9.
Tree Physiol ; 42(2): 208-224, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33611551

RESUMO

Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.


Assuntos
Quercus , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Quercus/fisiologia , Árvores/fisiologia
10.
Insects ; 12(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34821782

RESUMO

Food webs on forest trees include plant pathogens, arthropods, and their natural enemies. To increase the understanding of the impact of a plant pathogen on herbivore-natural enemy interactions, we studied the powdery mildew fungus Erysiphe alphitoides, the phytophagous mite Schizotetranychus garmani, and the predatory and mycophagous mite Euseius finlandicus in pedunculate oak (Quercus robur) leaves. In June, July and August of 2016, we assessed the severity of powdery mildew, mite population density and adult female mite size in 30 trees in three forests near Belgrade, Serbia. In August, the infection severity of E. alphitoides related positively to the population density of S. garmani and negatively to the body size of S. garmani females. Throughout the vegetative season, the infection severity of E. alphitoides related positively to the population density of E. finlandicus but not to its body size. The effect of E. alphitoides on the population density and adult size of S. garmani was not mediated by the population density of E. finlandicus, and vice versa. Interactions were consistent in all forests and varied with the summer month. Our findings indicate that E. alphitoides can influence the average body size and population densities of prey and predatory mites studied, irrespective of predator-prey relationships.

11.
J Plant Physiol ; 241: 153030, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493717

RESUMO

Phytophthora cinnamomi (Pc) is a dangerous pathogen that causes root rot (ink disease) and threatens the production of chestnuts worldwide. Despite all the advances recently reported at molecular and physiological level, there are still gaps of knowledge that would help to unveil the defence mechanisms behind plant-Pc interactions. Bearing this in mind we quantified constitutive and Pc-induced stress-related signals (hormones and metabolites) complemented with changes in photosynthetic related parameters by exploring susceptible and resistant Castanea spp.-Pc interactions. In a greenhouse experiment, five days before and nine days after inoculation with Pc, leaves and fine roots from susceptible C. sativa and resistant C. sativa × C. crenata clonal 2-year-old plantlets were sampled (clones Cs14 and 111-1, respectively). In the resistant clone, stomatal conductance (gs) and net photosynthesis (A) decreased significantly and soluble sugars in leaves increased, while in the susceptible clone gs and A remained unchanged and proline levels in leaves increased. In the resistant clone, higher constitutive content of root SA and foliar ABA, JA and JA-Ile as compared to the susceptible clone were observed. Total phenolics and condensed tannins were highest in roots of the susceptible clone. In response to infection, a dynamic hormonal response in the resistant clone was observed, consisting of accumulation of JA, JA-Ile and ABA in roots and depletion of total phenolics in leaves. However, in the susceptible clone only JA diminished in leaves and increased in roots. Constitutive and Pc-induced levels of JA-Ile were only detectable in the resistant clone. From the hormonal profiles obtained in leaves and roots before and after infection, it is concluded that the lack of effective hormonal changes in C. sativa explains the lack of defence responses to Pc of this susceptible species.


Assuntos
Resistência à Doença , Fagaceae/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Phytophthora , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/fisiologia , Resistência à Doença/fisiologia , Fagaceae/imunologia , Fagaceae/microbiologia , Metaboloma/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia
12.
Phytochemistry ; 66(20): 2458-67, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16176827

RESUMO

Dutch elm disease (DED) is the most devastating and widespread disease of elms. The pathogen, Ophiostoma novo-ulmi, spreads systemically causing xylem vessels blocking and cavitation, and ultimately resulting in the development of a wilt syndrome. Twig samples from susceptible and resistant Ulmus minor trees were harvested at 0, 5, 15, 30, 60, and 120 days post-inoculation (dpi) with O. novo-ulmi. Fourier transform-infrared (FT-IR) spectroscopy, in tandem with chemometrics, was used to monitor changes in wood chemistry as consequence of infection. Principal component analysis distinguished between spectra from inoculated and control elms, and from susceptible- and resistant-inoculated elms. By 30 dpi, infected xylem showed reduced relative levels of carbohydrates and enhanced relative levels of phenolic compounds, probably due to the degradation of cell wall polysaccharides by fungal enzymes and the synthesis of host defence compounds. On 15 dpi, samples from resistant-inoculated elms showed higher levels of starch than samples from susceptible-inoculated elms, suggesting that availability of starch reserves could affect the tree's capacity for defensive responses. The results showed the power of FT-IR spectroscopy for analysing changes in the major components of elm xylem as consequence of infection by DED, and its potential for detecting metabolic profiles related to host resistance.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Ulmus/metabolismo , Ulmus/microbiologia , Análise Multivariada , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Tree Physiol ; 35(2): 112-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25595753

RESUMO

Conifers exhibit a number of chemical and anatomical mechanisms to defend against pests and pathogens. Theory predicts an increased investment in plant defences under limited nutrient availability, but while this has been demonstrated for chemical defences, it has rarely been shown for anatomical defensive structures. In a long-lived woody plant, we tested the hypothesis that limited nutrient availability may promote an improved differentiation of persistent anatomical defences. We also hypothesized that the costs of differentiation of those long-term anatomical structures may be determined by genetic constraints on early growth potential. Using Pinus pinaster Ait. juveniles, we performed a greenhouse study with 15 half-sib families subjected to experimental manipulation of phosphorus (P) availability and herbivory-related induced responses. When plants were ∼30 cm high, half of the plant material was treated with methyl jasmonate to induce defences, and 2 weeks later plants were harvested and the abundance of resin canals in the cortex and xylem was assessed. Density of constitutive resin canals in the cortex and the total canal system was ∼1.5-fold higher in plants under limited P availability than in fully fertilized plants. Availability of P did not significantly influence the inducibility of resin canal traits. We found negative genetic correlations between plant growth and the density of constitutive canals in the xylem and total canal system, but only under conditions of limited nutrition. These results demonstrate for the first time that differentiation of constitutive anatomical-based defences is affected by P limitation. Moreover, results also evidence the existence of genetic constraints between plant growth and constitutive defensive investment, where lineages with the highest growth potential showed the lowest investment in constitutive resin canals.


Assuntos
Adaptação Fisiológica , Fósforo/metabolismo , Pinus/fisiologia , Doenças das Plantas , Resinas Vegetais , Estresse Fisiológico , Xilema/anatomia & histologia , Fertilizantes , Herbivoria , Pinus/anatomia & histologia , Pinus/genética , Plântula
14.
Tree Physiol ; 35(9): 987-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220737

RESUMO

The pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is one of the most serious threats to pine forests worldwide. Here we studied several components of susceptibility to PWN infection in a model group of pine species widely distributed in Europe (Pinus pinaster Ait., P. pinea L., P. sylvestris L. and P. radiata D. Don), specifically concerning anatomical and chemical traits putatively related to nematode resistance, whole-plant nematode population after experimental inoculation, and several biochemical and physiological traits indicative of plant performance, damage and defensive responses 60 days post inoculation (dpi) in 3-year-old plants. Pinus pinaster was the most susceptible species to PWN colonization, with a 13-fold increase in nematode population size following inoculation, showing up to 35-fold more nematodes than the other species. Pinus pinea was the most resistant species, with an extremely reduced nematode population 60 dpi. Axial resin canals were significantly wider in P. pinaster than in the other species, which may have facilitated nematode dispersal through the stem and contributed to its high susceptibility; nevertheless, this trait does not seem to fully determinate the susceptible character of a species, as P. sylvestris showed similar nematode migration rates to P. pinaster but narrower axial resin canals. Nematode inoculation significantly affected stem water content and polyphenolic concentration, and leaf chlorophyll and lipid peroxidation in all species. In general, P. pinaster and P. sylvestris showed similar chemical responses after infection, whereas P. radiata, which co-exists with the PWN in its native range, showed some degree of tolerance to the nematode. This work provides evidence that the complex interactions between B. xylophilus and its hosts are species-specific, with P. pinaster showing a strong susceptibility to the pathogen, P. pinea being the most tolerant species, and P. sylvestris and P. radiata having a moderate susceptibility, apparently through distinct coping mechanisms.


Assuntos
Especificidade de Hospedeiro , Nematoides/fisiologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Animais , Suscetibilidade a Doenças , Europa (Continente) , Geografia , Estresse Oxidativo , Pinus/anatomia & histologia , Especificidade da Espécie , Xilema/fisiologia
15.
PLoS One ; 8(7): e70148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922944

RESUMO

The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother) trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress.


Assuntos
Fusarium/fisiologia , Pinus/genética , Pinus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Meio Ambiente , Genótipo , Pinus/fisiologia , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia
16.
Phytochemistry ; 83: 104-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22910373

RESUMO

Application of endogenous plant hormone salicylic acid (SA) or essential oil component carvacrol (CA) in elms enhances tree resistance to the Dutch elm disease pathogen, although the effect of these compounds on tree metabolism is unknown. The chemical changes induced by SA or CA treatments in Ulmus minor were studied through gas chromatography-mass spectrometry (GC-MS) analysis of xylem tissues. Treatments consisted of fortnightly irrigating seedlings with water, SA or CA at 600 mg L⁻¹. The chemical composition of the xylem tissues sampled from treated trees was significantly altered depending on the treatment type. SA treatment induced an accumulation of the sinapyl alcohol, a precursor of lignin and other phenylpropanoid-derived products. CA treatment induced an accumulation of the methyl esters of palmitic, linoleic and stearic acids. Both treatments resulted in early bud burst and SA significantly reduced sapwood radial growth, possibly as a consequence of a trade-off between tree growth and tree defence. The enhanced resistance provided by these treatments is discussed.


Assuntos
Antifúngicos/farmacologia , Monoterpenos/farmacologia , Ophiostoma/efeitos dos fármacos , Ácido Salicílico/farmacologia , Ulmus/química , Xilema/química , Antifúngicos/química , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/química , Ophiostoma/crescimento & desenvolvimento , Ácido Salicílico/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa