Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003351

RESUMO

Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Neurônios Motores/metabolismo , Neurogênese
2.
J Biol Chem ; 286(24): 21500-10, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21518768

RESUMO

Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.


Assuntos
Proteínas ADAM/biossíntese , Regulação da Expressão Gênica , Proteínas de Membrana/biossíntese , MicroRNAs/biossíntese , Receptores Notch/metabolismo , Regiões 3' não Traduzidas , Proteína ADAM12 , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Peptídeo Hidrolases/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Regulação para Cima
3.
Tissue Eng Part B Rev ; 28(6): 1180-1191, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35018825

RESUMO

Neuromuscular junctions (NMJs) are specialized synapses responsible for signal transduction between motor neurons (MNs) and skeletal muscle tissue. Malfunction at this site can result from developmental disorders, toxic environmental exposures, and neurodegenerative diseases leading to severe neurological dysfunction. Exploring these conditions in human or animal subjects is restricted by ethical concerns and confounding environmental factors. Therefore, in vitro NMJ models provide exciting opportunities for advancements in tissue engineering. In the last two decades, multiple NMJ prototypes and platforms have been reported, and each model system design is strongly tied to a specific application: exploring developmental physiology, disease modeling, or high-throughput screening. Directing the differentiation of stem cells into mature MNs and/or skeletal muscle for NMJ modeling has provided critical cues to recapitulate early-stage development. Patient-derived inducible pluripotent stem cells provide a personalized approach to investigating NMJ disease, especially when disease etiology cannot be resolved down to a specific gene mutation. Having reproducible NMJ culture replicates is useful for high-throughput screening to evaluate drug toxicity and determine the impact of environmental threat exposures. Cutting-edge bioengineering techniques have propelled this field forward with innovative microfabrication and design approaches allowing both two-dimensional and three-dimensional NMJ culture models. Many of these NMJ systems require further validation for broader application by regulatory agencies, pharmaceutical companies, and the general research community. In this summary, we present a comprehensive review on the current state-of-art research in NMJ models and discuss their ability to provide valuable insight into cell and tissue interactions. Impact statement In vitro neuromuscular junction (NMJ) models reveal the specialized mechanisms of communication between neurons and muscle tissue. This site can be disrupted by developmental disorders, toxic environmental exposures, or neurodegenerative diseases, which often lead to fatal outcomes and is therefore of critical importance to the medical community. Many bioengineering approaches for in vitro NMJ modeling have been designed to mimic development and disease; other approaches include in vitro NMJ models for high-throughput toxicology screening, providing a platform to limit or replace animal testing. This review describes various NMJ applications and the bioengineering advancements allowing for human NMJ characteristics to be more accurately recapitulated. While the extensive range of NMJ device structures has hindered standardization attempts, there is still a need to harmonize these devices for broader application and to continue advancing the field of NMJ modeling.


Assuntos
Neurônios Motores , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético , Diferenciação Celular , Engenharia Tecidual
4.
J Biol Chem ; 285(29): 21969-77, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20457602

RESUMO

Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor beta1 (TGFbeta1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFbeta1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFbeta signaling pathway, is a master regulator of ADAM12 expression in response to TGFbeta1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFbeta1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFbeta1-induced expression of ADAM12. In a panel of TGFbeta1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFbeta1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFbeta1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.


Assuntos
Proteínas ADAM/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas ADAM/biossíntese , Proteína ADAM12 , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indução Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/biossíntese , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteína Smad2/deficiência , Proteína Smad2/metabolismo , Proteína Smad3/deficiência , Proteína Smad3/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Tissue Eng Part C Methods ; 27(4): 242-252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599165

RESUMO

Neuromuscular junctions (NMJs), specialized synapses between motor neurons and muscle fibers, are essential for muscle activity. A simple and reproducible cell-based in vitro NMJ platform is needed to test the impact of chemicals on the neuron-muscle communication. Our platform utilizes genetically modified neurons and muscle cells, optimized culture conditions, and commercially available multielectrode array system for recording action potentials. Neuronal cells (NSC34) were optogenetically modified with channelrhodopsin chimera to allow for simultaneous, light-mediated, millisecond-precise activation of neuronal population. This signal is propagated through functional synapses to the muscle fibers. Muscle cells (C2C12) were modified by incorporating gap junction protein (Connexin-43) to improve intracellular communication without affecting muscle differentiation. This communication between muscle fibers resulted in better signal propagation and signal strength. Optimized culture medium facilitated the growth and differentiation of both cell types together. Our system was validated using vecuronium, a muscle relaxant, which abolished the muscle response. This in vitro model provides a unique tool for establishing a NMJ platform that is easy to record and analyze. Potential applications include nondestructive long-term screening of drugs affecting the NMJ.


Assuntos
Fibras Musculares Esqueléticas , Junção Neuromuscular , Neurônios Motores
6.
BMC Mol Cell Biol ; 22(1): 13, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602141

RESUMO

BACKGROUND: Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. RESULTS: Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-ß signaling pathway and consistent activation of sonic hedgehog, Wnt/ß-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. CONCLUSIONS: Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas com Homeodomínio LIM/genética , Neurônios Motores/citologia , Fatores de Transcrição/genética , Transcriptoma
7.
Adv Healthc Mater ; 9(4): e1901137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944612

RESUMO

Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.


Assuntos
Grafite , Condutividade Elétrica , Eletrodos , Músculo Esquelético , Polímeros
8.
Psychol Res Behav Manag ; 12: 39-44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30655710

RESUMO

INTRODUCTION: Active acromegaly is a rare chronic endocrine disorder caused by excessive growth hormone (GH). Clinical studies suggest that cognitive performance is impaired in acromegaly - particularly executive function as well as short- and long-term memory. This study compared the quality of life (QoL) and executive functioning in acromegaly patients vs healthy controls. MATERIALS AND METHODS: This was an observational case-control study on 38 subjects divided into 19 acromegaly patients and 19 matched controls. The groups were evaluated for QoL, attention, and executive function. All subjects completed Acromegaly Quality of Life Questionnaire (AcroQoL), Trail Making Test (parts A and B), Stroop, and phonemic fluency tests. RESULTS: Acromegaly patients had an AcroQoL global score that was significantly lower than controls. There were significant differences between the acromegaly group and the control group in terms of the physical effects (P=0.001) and appearance (P<0.001) but not for personal relationships (P=0.421). Acromegaly patients performed worse in the trail making test part B. They provided significantly fewer words than healthy subjects in phonemic fluency testing. Although patients performed generally worse than controls, no significant differences were noted in the trail making test part A, Stroop test, and the constrained phonemic fluency. CONCLUSION: Acromegaly patients display worse executive functioning than healthy controls and have a decreased QoL.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa