Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814344

RESUMO

The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H]+, [M + NH4]+, [M + Na]+, [M-H]-, [M-2H]2-, [M + HCOO]-, and [M + CH3COO]- ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.

2.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766156

RESUMO

Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia, during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS: Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa