Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Sci ; 127(Pt 19): 4172-85, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25052094

RESUMO

Cell fusion occurs as part of the differentiation of some cell types, including myotubes in muscle and osteoclasts in remodeling bone. In the human placenta, mononuclear cytotrophoblasts in a human chorionic gonadotropin (hCG)-driven process fuse to form multinucleated syncytia that allow the exchange of nutrients and gases between the maternal and fetal circulation. Experiments in which protein kinase A (PKA) is displaced from A-kinase anchoring proteins (AKAPs), or in which specific AKAPs are depleted by siRNA-mediated knockdown, point to ezrin as a scaffold required for hCG-, cAMP- and PKA-mediated regulation of the fusion process. By a variety of immunoprecipitation and immunolocalization experiments, we show that ezrin directs PKA to a molecular complex of connexin 43 (Cx43, also known as GJA1) and zona occludens-1 (ZO-1, also known as TJP1). A combination of knockdown experiments and reconstitution with ezrin or Cx43 with or without the ability to bind to its interaction partner or to PKA demonstrate that ezrin-mediated coordination of the localization of PKA and Cx43 is necessary for discrete control of Cx43 phosphorylation and hCG-stimulated gap junction communication that triggers cell fusion in cytotrophoblasts.


Assuntos
Conexina 43/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Junções Comunicantes/metabolismo , Trofoblastos/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular , Fusão Celular , Feminino , Humanos , Proteínas de Membrana/metabolismo , Gravidez , Transdução de Sinais , Trofoblastos/citologia
2.
Blood ; 118(19): 5141-51, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21937704

RESUMO

Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.


Assuntos
Basigina/metabolismo , Antígeno CTLA-4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Linfócitos T Reguladores/imunologia , Biomarcadores/metabolismo , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Ativação Linfocitária , Proteômica , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/metabolismo
3.
Mar Drugs ; 11(6): 1763-82, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23708184

RESUMO

Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100-500 nM), the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment.


Assuntos
Proteínas do Citoesqueleto/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Ácido Okadáico/toxicidade , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Espectrometria de Massas , Microdomínios da Membrana/metabolismo , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos
4.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37526071

RESUMO

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Assuntos
Medicamentos sob Prescrição , Tecnologia , Bioensaio/métodos , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos
5.
Bioanalysis ; 15(15): 861-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37584363

RESUMO

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.


Assuntos
Bioensaio , Relatório de Pesquisa , Citometria de Fluxo/métodos , Ligantes , Biomarcadores/análise , Bioensaio/métodos
6.
Bioanalysis ; 14(11): 737-793, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35578991

RESUMO

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) are published in volume 14 of Bioanalysis, issues 9 and 10 (2022), respectively.


Assuntos
Receptores de Antígenos Quiméricos , Vacinas , Biomarcadores/análise , Sistemas CRISPR-Cas , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Ativa , Reação em Cadeia da Polimerase
7.
Bioanalysis ; 13(6): 415-463, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533276

RESUMO

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Citometria de Fluxo , Terapia Genética , Reação em Cadeia da Polimerase em Tempo Real , Vacinas/análise , Humanos , Controle de Qualidade , Receptores de Antígenos Quiméricos/análise , Estados Unidos , United States Food and Drug Administration
8.
Proteomics ; 10(7): 1494-504, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20127688

RESUMO

DJ-1 was originally identified to be an oncogenic product, but has later been shown to be highly multifunctional. DJ-1 plays a role in oxidative stress response and transcriptional regulation, and loss of its function leads to an early onset of Parkinsonism. To further understand the mechanisms behind DJ-1's role in cell survival and death, we investigated alternations in endogenous DJ-1 protein-protein interaction in apoptotic cells exposed to the phosphatase inhibitor okadaic acid. By combining cellular stable isotopic labelling of amino acids in cell culture, sub-cellular fractionation, co-immunoprecipitation, and MS, we identified a novel group of DJ-1 interaction partners that increased their association to DJ-1 in okadaic acid-exposed cells. These proteins were integral components of the Mi-2/nucleosome remodelling and deacetylase (NuRD) complex. Knockdown of DJ-1 and MTA2, a core component of the NuRD complex, had a similar and pro-apoptotic effect on the transcriptional- and p53-dependent cell death induced by daunorubicin. On the other hand, MTA2 knockdown had no significant effect on the progression of p53-independent okadaic acid-induced apoptosis. Our data suggest that the increased DJ-1/NuRD interaction is a general anti-stress response regulated by okadaic acid-induced modifications of DJ-1. The observed interaction between DJ-1 and the NuRD complex may give new clues to how DJ-1 can protect cells from p53-dependent cell death.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Oncogênicas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Daunorrubicina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Humanos , Ácido Okadáico/farmacologia , Proteína Desglicase DJ-1 , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
9.
Proteomics ; 10(15): 2758-68, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20486122

RESUMO

Several lines of evidence suggest that detergent-resistant membranes (DRMs) (also known as lipid rafts and glycosphingolipid-enriched microdomains) may have a role in signaling pathways of apoptosis. Here, we developed a method that combines DRMs isolation and methanol/chloroform extraction with stable isotope labeling with amino acids in cell culture-based quantitative proteome analysis of DRMs from control and cisplatin-induced apoptotic Jurkat T cells. This approach enabled us to enrich proteins with a pivotal role in cell signaling of which several were found with increased or decreased amounts in DRMs upon induction of apoptosis. Specifically, we show that three isoforms of protein kinase C (PKC) are regulated differently upon apoptosis. Although PKC alpha which belongs to the group of conventional PKCs is highly up-regulated in DRMs, the levels of two novel PKCs, PKC eta and PKC theta, are significantly reduced. These alterations/differences in PKC regulation are verified by immunoblotting and confocal microscopy. In addition, a specific enrichment of PKC alpha in apoptotic blebs and buds is shown. Furthermore, we observe an increased expression of ecto-PKC alpha as a result of exposure to cisplatin using flow cytometry. Our results demonstrate that in-depth proteomic analysis of DRMs provides a tool to study differential localization and regulation of signaling molecules important in health and disease.


Assuntos
Apoptose , Microdomínios da Membrana/metabolismo , Proteína Quinase C/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linfócitos T/citologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fracionamento Celular , Cisplatino/farmacologia , Humanos , Células Jurkat , Isoformas de Proteínas/metabolismo , Linfócitos T/enzimologia
10.
Exp Cell Res ; 314(10): 2141-9, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18455725

RESUMO

The liver specific protein phosphatase inhibiting toxin nodularin (from Nodularia spumigena) rapidly induces hepatocyte apoptosis. Incubation of freshly isolated hepatocytes with this toxin results in hyperphosphorylation of cellular proteins before any morphological signs of apoptosis appear. These phosphorylated proteins may play key roles in the early stage of apoptosis. Here, we identified one of the phosphoproteins to be acyl-CoA binding protein (ACBP), a highly conserved and ubiquitously expressed protein. Phosphorylation-site analysis by matrix-assisted laser desorption ionization time-of-flight MS/MS revealed that the observed phosphorylation is positioned on Ser1 in the N-terminal tryptic peptide Ac-SQADFDKAAE EVKRLK of the rat liver protein. Additionally, we observed a translocation of ACBP towards the cellular membrane in the apoptotic hepatocytes. Moreover, nodularin-induced apoptosis was highly dependent on calpain activation, an event that has previously been shown to be regulated by ACBP. Our findings introduce the possibility that reversible phosphorylation of ACBP regulates its ability to activate calpain in phosphatase inhibitor-induced apoptosis and controls the cellular accessibility of long-chain fatty acid-CoAs for cellular signaling.


Assuntos
Apoptose/fisiologia , Inibidor da Ligação a Diazepam/metabolismo , Hepatócitos/fisiologia , Peptídeos Cíclicos/metabolismo , Acrilatos/metabolismo , Sequência de Aminoácidos , Animais , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Células Cultivadas , Hepatócitos/citologia , Masculino , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Toxins (Basel) ; 4(12): 1482-99, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23242317

RESUMO

Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS), which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1), without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.


Assuntos
Citoesqueleto de Actina/metabolismo , Apoptose/fisiologia , Hepatócitos/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Superóxido Dismutase/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Hepatócitos/metabolismo , Masculino , Oxirredução , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Superóxido Dismutase-1
12.
J Biol Chem ; 278(17): 15142-52, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12554741

RESUMO

Recombinant human phenylalanine hydroxylase (hPAH) expressed in Escherichia coli for 24 h at 28 degrees C has been found by two-dimensional electrophoresis to exist as a mixture of four to five molecular forms as a result of nonenzymatic deamidation of labile Asn residues. The multiple deamidations alter the functional properties of the enzyme including its affinity for l-phenylalanine and tetrahydrobiopterin, catalytic efficiency, and substrate inhibition and also result in enzyme forms more susceptible to limited tryptic proteolysis. Asn(32) in the regulatory domain deamidates very rapidly because of its nearest neighbor amino acid Gly(33) (Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., and Flatmark, T. (2003) Eur. J. Biochem., in press). Matrix-assisted laser desorption/ionization time of flight-mass spectrometry of the tryptic peptides in the catalytic domain of a 24-h (28 degrees C) expressed enzyme has shown Asn(376) and Asn(133) to be labile residues. Site-directed mutagenesis of nine Asn residues revealed that the deamidations of Asn(32) and Asn(376) are the main determinants for the functional and regulatory differences observed between the 2- and 24-h-induced wild-type (wt) enzyme. The Asn(32) --> Asp, Asn(376) --> Asp, and the double mutant forms expressed for 2 h at 28 degrees C revealed qualitatively similar regulatory properties as the highly deamidated 24-h expressed wt-hPAH. Moreover, deamidation of Asn(32) in the wt-hPAH (24 h expression at 28 degrees C) and the Asn(32) --> Asp mutation both increase the initial rate of phosphorylation of Ser(16) by cAMP-dependent protein kinase (p < 0.005). By contrast, the substitution of Gly(33) with Ala or Val, both preventing the deamidation of Asn(32), resulted in enzyme forms that were phosphorylated at a similar rate as nondeamidated wt-hPAH, even on 24-h expression. The other Asn --> Asp substitutions (in the catalytic domain) revealed that Asn(207) and Asn(223) have an important stabilizing structural function. Finally, two recently reported phenylketonuria mutations at Asn residues in the catalytic domain were studied, i.e. Asn(167) --> Ile and Asn(207) --> Asp, and their phenotypes were characterized.


Assuntos
Asparagina/metabolismo , Estabilidade Enzimática , Fenilalanina Hidroxilase/metabolismo , Amidas/metabolismo , Sequência de Aminoácidos , Asparagina/genética , Ácido Aspártico , Domínio Catalítico , Humanos , Cinética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Eur J Biochem ; 270(5): 929-38, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603326

RESUMO

Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.


Assuntos
Amidas/metabolismo , Asparagina/metabolismo , Fenilalanina Hidroxilase/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/isolamento & purificação , Fosforilação , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
14.
Eur J Biochem ; 270(5): 981-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603331

RESUMO

The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.


Assuntos
Coenzimas , Dopamina/metabolismo , Metaloproteínas/metabolismo , Fenilalanina Hidroxilase/metabolismo , Pteridinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Cofatores de Molibdênio , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/isolamento & purificação , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa