Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(1): e2303688, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670541

RESUMO

Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications. The GNIs on the H-glass are synthesized using a simple yet, robust thermal dewetting process. The H-glass embedded with GNIs demonstrates versatility in its applications, such as i) acting as a room temperature chemiresistive gas sensor (70% response for NO2 gas); ii) serving as substrates for surface-enhanced Raman spectroscopy for the identifications of Nile blue (dye) and picric acid (explosive) analytes down to nanomolar concentrations with enhancement factors of 4.8 × 106 and 6.1 × 105 , respectively; and iii) functioning as a nonlinear optical saturable absorber with a saturation intensity of 18.36 × 1015 W m-2 at 600 nm, and the performance characteristics are on par with those of materials reported in the existing literature. This work establishes a facile strategy to develop advanced materials by depositing metal nanoislands on glass for various functional applications.

2.
Phys Chem Chem Phys ; 26(21): 15681-15692, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38766760

RESUMO

This study employs femtosecond transient absorption spectroscopy to investigate the rapid dynamics of excited state carriers in three metalated porphyrin-naphthalimide (PN) molecules and one free-base molecule. The dynamics of electron injection, from PN to mesoporous titania (TiO2), in PN adsorbed TiO2 films (Ti-PN), were carefully investigated and compared to PN adsorbed ZrO2 films (Zr-PN). In addition, we examined the self-assembled PN films and found that, in their self-assembled state, these molecules exhibited a longer relaxation time than Zr-PN monomeric films, where the charge injection channel was insignificant. The ground-state bleach band in the Ti-PN films gradually shifted to longer wavelengths, indicating the occurrence of the Stark effect. Faster electron injection was observed for the metalated PN systems and the electron injection times from the various excited states to the conduction band of TiO2 (CB-TiO2) were obtained from the target model analysis of the transient absorption spectra data matrix. In these metal-organic complexes, hot electron injection from PN to CB-TiO2 occurred on a time scale of <360 fs. Importantly, Cu(II)-based PN complexes exhibited faster injection and longer recombination times. The injection times have been estimated to result from a locally excited state at ≈280 fs, a hot singlet excited state at 4.95 ps, and a vibrationally relaxed singlet excited state at 97.88 ps. The critical photophysical and charge injection processes seen here provide the potential for exploring the underlying factors involved and how they correlate with photocatalytic performance.

3.
Opt Lett ; 48(13): 3519-3522, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390170

RESUMO

Lead-free halide double perovskite nanocrystals (DPNCs) are emerging materials, recently explored as potential candidates in light-emitting, photovoltaic, and other optoelectronic applications. This Letter reveals unusual photophysical phenomena and nonlinear optical (NLO) properties of Mn-doped Cs2AgInCl6 nanocrystals (NCs) via temperature-dependent photoluminescence (PL) and femtosecond Z-scan measurements. The PL emission measurements suggest that self-trapped excitons (STEs) are present, and more than one STE state is possible for this doped double perovskite. We observed enhanced NLO coefficients, owing to the improved crystallinity arising from the Mn doping. From the closed aperture Z-scan data, we have calculated two fundamental parameters, Kane energy (29 eV) and exciton reduced mass (0.22m0). We further obtained the optical limiting onset (1.84 mJ/cm2) and figure of merit as a proof-of-concept application to demonstrate the potential in optical limiting and optical switching applications. Highlighting the self-trapped excitonic emission and NLO applications, the multifunctionality of this material system is demonstrated. This investigation provides an avenue to design novel photonic and nonlinear optoelectronic devices.


Assuntos
Nanopartículas , Óxidos , Fótons , Temperatura
4.
Opt Lett ; 48(21): 5539-5542, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910697

RESUMO

This study reveals the possibility of distinct ablation mechanisms at different radial positions of the ablated track on GaAs when ablated with femtosecond pulses in distilled water. From the center to the edges of the ablated track, fascinating features such as micron-sized cones, nano-pores, and nano-ripple trenches (average size of 60-70 nm) were observed. The requirement for simulations incorporating the variations in a Gaussian beam fluence and dynamics of the melt flow/surrounding media is discussed. Deep-subwavelength structures, i.e., nano-ripple trenches with a ripple size of ∼λ/11 are achieved on the GaAs surface in this study. Further, these GaAs surface structures acted as excellent hybrid surface-enhanced Raman spectroscopy platforms upon gold coating.

5.
Nanotechnology ; 34(40)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37402359

RESUMO

We present a simple, fast, and single-step approach for fabricating hybrid semiconductor-metal nanoentities through liquid-assisted ultrafast (∼50 fs, 1 kHz, 800 nm) laser ablation. Femtosecond (fs) ablation of Germanium (Ge) substrate was executed in (i) distilled water (ii) silver nitrate (AgNO3-3, 5, 10 mM) (iii) Chloroauric acid (HAuCl4-3, 5, 10 mM), yielding the formation of pure Ge, hybrid Ge-silver (Ag), Ge-gold (Au) nanostructures (NSs) and nanoparticles (NPs). The morphological features and corresponding elemental compositions of Ge, Ge-Ag, and Ge-Au NSs/NPs have been conscientiously studied using different characterization techniques. Most importantly, the deposition of Ag/Au NPs on the Ge substrate and their size variation were thoroughly investigated by changing the precursor concentration. By increasing the precursor concentration (from 3 mM to 10 mM), the deposited Au NPs and Ag NPs' size on the Ge nanostructured surface was increased from ∼46 nm to ∼100 nm and from ∼43 nm to ∼70 nm, respectively. Subsequently, the as-fabricated hybrid (Ge-Au/Ge-Ag) NSs were effectively utilized to detect diverse hazardous molecules (e.g. picric acid and thiram) via the technique of surface-enhanced Raman scattering (SERS). Our findings revealed that the hybrid SERS substrates achieved at 5 mM precursor concentration of Ag (denoted as Ge-5Ag) and Au (denoted as Ge-5Au) had demonstrated superior sensitivity with the enhancement factors of ∼2.5 × 104, 1.38 × 104(for PA), and ∼9.7 × 105and 9.2 × 104(for thiram), respectively. Interestingly, the Ge-5Ag substrate has exhibited ∼10.5 times higher SERS signals than the Ge-5Au substrate.

6.
Appl Opt ; 61(16): 4947-4955, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255981

RESUMO

In this study, we report a novel, to the best of our knowledge, instrumentation procedure in the automation of laser beam steering for raster/spiral scanning of the samples used in standoff femtosecond laser-induced breakdown spectroscopy (LIBS) experiments. We have used a readily available and easy-to-handle Arduino-based computerized numerical control (CNC) shield along with the free software, universal G-code sender, for the automation. Standoff femtosecond filamentation-induced breakdown spectra (St-Fs-FIBS) of metals, three compositions of Ag-Au alloy, and polyvinyl chloride, unplasticized polyvinyl chloride, and chlorinated polyvinyl chloride plastic samples were recorded using the developed automated experimental setup. The St-Fs-FIBS spectra were recorded at a standoff distance of ∼5m utilizing a simple hand-held spectrometer. Furthermore, principal component analysis technique was utilized for the successful classification of three compositions of Au-Ag alloy spectra using their St-Fs-FIBS spectral data.

7.
Appl Opt ; 61(25): 7283-7291, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256024

RESUMO

The nonlinear optical properties of pure ZnO and Ni-doped ZnO thin films are explored using the Z-scan technique at different input laser intensities and an excitation wavelength of 750 nm by 100 fs laser pulses. The pure ZnO and Ni-doped ZnO thin films were prepared by radio frequency magnetron sputtering at room temperature. A scanning electron microscope equipped with energy-dispersive x-ray spectroscopy was used to measure the thickness and composition of the thin films, while a UV-visible spectrophotometer was used to measure the linear optical properties. The structure of the thin films was measured using x-ray diffraction. Saturable absorption (SA) was observed in the pure ZnO thin film, while Ni-doped ZnO illustrated a combination of SA and reverse SA (RSA). The nonlinear absorption coefficient (ß) and nonlinear refractive index (n2) of both pure ZnO and Ni-doped ZnO thin films were found to be input laser intensity dependent. As the input laser intensity increased, the nonlinear absorption coefficient and the nonlinear refractive index of both samples increased. An enhancement of two times in the nonlinear refractive index was observed for the Ni-doped ZnO thin film compared to the pure ZnO thin film. The optical limiting behavior of pure ZnO and Ni-doped ZnO thin films was investigated, and the data demonstrated that Ni-doped ZnO thin film is a good candidate for optical limiter applications due to the presence of strong RSA.

8.
Opt Express ; 29(19): 30045-30061, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614736

RESUMO

We report results from our extensive studies on the fabrication of ultra-thin, flexible, and cost-effective Ag nanoparticle (NP) coated free-standing porous silicon (FS-pSi) for superior molecular sensing. The FS-pSi has been prepared by adopting a simple wet-etching method. The deposition time of AgNO3 has been increased to improve the number of hot-spot regions, thereby the sensing abilities are improved efficiently. FESEM images illustrated the morphology of uniformly distributed AgNPs on the pSi surface. Initially, a dye molecule [methylene blue (MB)] was used as a probe to evaluate the sensing capabilities of the substrate using the surface-enhanced Raman scattering (SERS) technique. The detection was later extended towards the sensing of two important explosive molecules [ammonium nitrate (AN), picric acid (PA)], and a pesticide molecule (thiram) clearly demonstrating the versatility of the investigated substrates. The sensitivity was confirmed by estimating the analytical enhancement factor (AEF), which was ∼107 for MB and ∼104 for explosives and pesticides. We have also evaluated the limit of detection (LOD) values in each case, which were found to be 50 nM, 1 µM, 2 µM, and 1 µM, respectively, for MB, PA, AN, and thiram. Undeniably, our detailed SERS results established excellent reproducibility with a low RSD (relative standard deviation). Furthermore, we also demonstrate the reasonable stability of AgNPs decorated pSi by inspecting and studying their SERS performance over a period of 90 days. The overall cost of these substrates is attractive for practical applications on account of the above-mentioned superior qualities.

9.
Analyst ; 144(7): 2327-2336, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30768076

RESUMO

Surface enhanced Raman spectroscopy (SERS) is a cutting edge analytical tool for trace analyte detection due to its highly sensitive, non-destructive and fingerprinting capability. Herein, we report the detection of multiple analytes from various mixtures using gold nanoparticles (NPs) and nanostructures (NSs) as SERS platforms. NPs and NSs were achieved through the simple approach of laser ablation in liquids (LAL) and their morphological studies were conducted with a UV-Visible absorption spectrometer, a high resolution transmission electron microscope (HRTEM) and a field emission scanning electron microscope (FESEM). The fabricated NPs/NSs allowed the sensitive and selective detection of different mixed compounds containing (i) rhodamine 6G (Rh6G) and methylene blue (MB), (ii) crystal violet (CV) and malachite green (MG), (iii) picric acid (explosive) and MB (dye), (iv) picric acid and 3-nitro-1,2,4- triazol-5-one (explosive, NTO) and (v) picric acid and 2,4-dinitrotoluene (explosive, DNT) using a portable Raman spectrometer. Thus, the obtained results demonstrate the capability of fabricated SERS substrates in identifying explosives and dyes from various mixtures. This could pave a new way for simultaneous detection of multiple analytes in real field applications.

10.
Opt Express ; 26(7): 8069-8083, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715780

RESUMO

We report the standoff (up to ~2 m) and remote (~8.5 m) detection of novel high energy materials/explosive molecules (Nitroimidazoles and Nitropyrazoles) using the technique of femtosecond laser induced breakdown spectroscopy (LIBS). We utilized two different collection systems (a) ME-OCT-0007 (commercially available) and (b) Schmidt-Cassegrain telescope for these experiments. In conjunction with LIBS data, principal component analysis was employed to discriminate/classify the explosives and the obtained results in both configurations are compared. Different aspects influencing the LIBS signal strength at far distances such as fluence at target, efficiency of collection system etc. are discussed.

11.
Opt Lett ; 43(15): 3465-3468, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067686

RESUMO

The femtosecond filament-induced breakdown spectroscopy (FIBS) technique coupled with principal component analysis (PCA) is demonstrated for standoff (ST) analysis of metals, alloys (Al, Cu, brass, stainless steel), and bimetallic strips (Ag@Cu, Ag@Au with varying weight percentages). The experiments were performed by analyzing the filament-produced plasma at ∼6.5 m from the laser. The plasma emissions were collected using a Schmidt-Cassegrain telescope (6″ f/10) at ∼8 m away. The variations in intensities of persistent atomic transitions in the FIBS spectra clearly reflected the varying weight percentage in bimetallic strips. Furthermore, PCA was successfully utilized to discriminate the metals, alloys, and bimetallic strips batch wise and altogether. Our results demonstrate the capability of femtosecond ST-FIBS for ST analytical applications.

12.
Dalton Trans ; 53(14): 6436-6444, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506309

RESUMO

ß-Heptasubstituted porphyrins [MTPP(NO2)X6; M = 2H, NiII, CuII, and ZnII; X = Br, Ph, and PE] were synthesized and their third-order nonlinear optical (NLO) properties explored using the single-beam Z-scan technique with femtosecond, MHz pulses in the visible range. The three-photon absorption (γ), third-order nonlinear optical susceptibility (χ3), three-photon absorption cross-section (σ3), and nonlinear refractive index (n2) have been determined from theoretical fits with experimental results. The sign and magnitude of the nonlinear refractive index (n2) have been obtained from the closed-aperture experiment while the three-photon absorption coefficient and three-photon absorption cross-section were determined from the open-aperture experiment. The magnitudes of the 3PA and σ3 extended in the range of (2.7-3.4) × 10-23 cm3 W-2 and (5.5-7.0) × 10-78 cm6 s2, respectively. The higher magnitude of the NLO coefficients ensures their utility in optical and photonic applications.

13.
ACS Appl Mater Interfaces ; 16(13): 16996-17006, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514247

RESUMO

The present work demonstrates the ultrafast carrier dynamics and third-order nonlinear optical properties of electrochemically fabricated free-standing porous silicon (FS-PSi)-based optical microcavities via femtosecond transient absorption spectroscopy (TAS) and single-beam Z-scan techniques, respectively. The TAS (pump: 400 nm, probe: 430-780 nm, ∼70 fs, 1 kHz) decay dynamics are dominated by the photoinduced absorption (PIA, lifetime range: 4.7-156 ps) as well as photoinduced bleaching (PIB, 4.3-324 ps) for the cavity mode (λc) and the band edges. A fascinating switching behavior from the PIB (-ve) to the PIA (+ve) has been observed in the cavity mode, which shows the potential in ultrafast switching applications. The third-order optical nonlinearities revealed an enhanced two-photon absorption coefficient (ß) in the order of 10-10 mW-1 along with the nonlinear refractive index (n2) in the range of 10-17 m2 W-1. Furthermore, a real-time sensing application of such FS-PSi microcavities has been demonstrated for detecting organic solvents by simultaneously monitoring the kinetics in reflection and transmission mode.

14.
J Phys Condens Matter ; 36(23)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430564

RESUMO

We report a study of the role of material's conductivity in determining the morphology of nanoparticles and nanostructures produced by ultrafast laser ablation of solids. Nanoparticles and textured surfaces formed by laser ablation display a wide variation in size and morphology depending on the material. In general, these qualities can be grouped as to material type, insulator, semiconductor, or metal; although each has many other different material properties that make it difficult to identify the critical material factor. In this report, we study these nanoparticle/surface structural characteristics as a function of silicon (Si) resistivity, thus honing-in on this critical parameter and its effects. The results show variations in morphology, optical, and nonlinear properties of Si nanoparticles. The yield of colloidal Si nanoparticles increased with an increase in the conductivity of Si. Laser-induced periodic surface structures formed on ablated substrates are also found to be sensitive to the initial conductivity of the material. Further, the laser ablation of Gamma-irradiated Si has been investigated to verify the influence of altered conductivity on the formation of Si nanoparticles. These observations are interpreted using the basic mechanisms of the laser ablation process in a liquid and its intricate relation with the initial density of states and thermal conductivities of the target material.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122218, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512965

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is an improved Raman spectroscopy technique to identify the analyte under study uniquely. At the laboratory scale, SERS has realised a huge potential to detect trace analytes with promising applications across multiple disciplines. However, onsite detection with SERS is still limited, given the unwanted glitches of signal reliability and blinking. SERS has inherent signal fluctuations due to multiple factors such as analyte adsorption, inhomogeneous distribution of hotspots, molecule orientation etc. making it a stochastic process. Given these signal fluctuations, validating a signal as a representation of the analyte often relies on an expert's knowledge. Here we present a neural network-aided SERS model (NNAS) without expert interference to efficiently identify reliable SERS spectra of trace explosives (tetryl and picric acid) and a dye molecule (crystal violet). The model uses the signal-to-noise ratio approach to label the spectra as representative (RS) and non-representative (NRS), eliminating the reliability of the expert. Further, experimental conditions were systematically varied to simulate general variations in SERS instrumentation, and a deep-learning model was trained. The model has been validated with a validation set followed by out-of-sample testing with an accuracy of 98% for all the analytes. We believe this model can efficiently bridge the gap between laboratory and on-site detection using SERS.


Assuntos
Aprendizado Profundo , Substâncias Explosivas , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
16.
RSC Adv ; 13(4): 2620-2630, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741174

RESUMO

We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm2) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated.

17.
Biosensors (Basel) ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979540

RESUMO

Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Análise Espectral Raman/métodos , Aprendizado de Máquina , Teste para COVID-19
18.
J Vis Exp ; (196)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395591

RESUMO

The technique of ultrafast laser ablation in liquids has evolved and matured over the past decade, with several impending applications in various fields such as sensing, catalysis, and medicine. The exceptional feature of this technique is the formation of nanoparticles (colloids) and nanostructures (solids) in a single experiment with ultrashort laser pulses. We have been working on this technique for the past few years, investigating its potential using the surface-enhanced Raman scattering (SERS) technique in hazardous materials sensing applications. Ultrafast laser-ablated substrates (solids and colloids) could detect several analyte molecules at the trace levels/mixture form, including dyes, explosives, pesticides, and biomolecules. Here, we present some of the results achieved using the targets of Ag, Au, Ag-Au, and Si. We have optimized the nanostructures (NSs) and nanoparticles (NPs) obtained (in liquids and air) using different pulse durations, wavelengths, energies, pulse shapes, and writing geometries. Thus, various NSs and NPs were tested for their efficiency in sensing numerous analyte molecules using a simple, portable Raman spectrometer. This methodology, once optimized, paves the way for on-field sensing applications. We discuss the protocols in (a) synthesizing the NPs/NSs via laser ablation, (b) characterization of NPs/NSs, and (c) their utilization in the SERS-based sensing studies.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Ouro/química , Prata/química , Lasers , Coloides
19.
Dalton Trans ; 52(17): 5523-5533, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37005971

RESUMO

Asymmetrically substituted porphyrins possessing ethyl acetoacetate or acetylacetone (EAA or acac) with six bromine atoms at ß-positions were synthesized and then characterized by various spectroscopic techniques, such as UV-Vis, fluorescence and NMR, and also by CV, DFT, MALDI-TOF-MS and elemental analysis. The mechanistic pathway followed the nucleophilic substitution reaction (nucleophile: EAA and acac) with MTPP(NO2)Br6 (M = 2H, Cu(II), and Ni(II)), and the resultant ß-heptasubstituted porphyrins exhibited keto-enol tautomerism, as supported by 1H NMR spectroscopy. The six bulky bromo and EAA/acac groups made the macrocyclic ring highly electron deficient and nonplanar such that the quantum yield and fluorescence intensity for H2TPP[EAA]Br6 and H2TPP[acac]Br6 were severely reduced in contrast to those values for H2TPP. The poor electron density and nonplanarity over the porphyrin ring shifted the first oxidation potential from 11 to 521 mV anodically for MTPP[X]Br6 [M = 2H, Cu(II), and Ni(II); X = EAA or acac] as compared to corresponding MTPPs. Notably, density functional theory proved the nonplanarity of the synthesized porphyrins as Δ24 spans from ±0.546 to ± 0.559 Å while ΔCß stretches from ±0.973 to ±1.162 Å. The third-order nonlinear optical measurements were performed using the femtosecond pulsed laser Z-scan technique at 800 nm and 1 kHz repetition rate to acquire insights into nonlinear absorption and nonlinear refraction of the porphyrins. The three-photon absorption coefficients (γ) are in the range of 2.2 × 10-23-2.8 × 10-23 cm3 W-2 and the nonlinear refractive index values were in the range of 3.7 × 10-16-5.1 × 10-16 cm2 W-1. The higher-order nonlinear absorption exhibited by porphyrins helps improve resolution at depth for various photonic and optoelectronic applications.

20.
Nanoscale ; 15(21): 9372-9389, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165674

RESUMO

Cs2AgInCl6 double perovskite (DP) nanocrystals (NCs) are an emerging class of materials with promising application potential in photonics/optoelectronics owing to their nontoxicity, direct bandgap, and high thermal and moisture stability. These NCs are, however, rarely explored for nonlinear optical (NLO) applications. Herein, we present a comprehensive investigation of the photophysical and nonlinear optical properties of erbium- (Er) and ytterbium (Yb)-doped Cs2AgInCl6 nanocrystals (denoted as Er-DP and Yb-DP, respectively). Temperature-dependent photoluminescence of these NCs was analyzed to estimate their exciton binding energy, Huang-Rhys parameter (S), and electron-phonon coupling strength, which are of fundamental interest to gain an in-depth understanding of the material systems. Femtosecond Z-scan experiments with 800 nm excitation revealed the reverse saturable absorption (RSA) behavior owing to three-photon absorption (3PA). The obtained values of the 3PA coefficients were 1.35 × 10-4 and 1.64 × 10-4 cm3 GW-2, respectively, and the nonlinear refractive indices were estimated to be 1.02 × 10-15 and 1.15 × 10-15 cm2 W-1, respectively, for Er-DP and Yb-DP. These values are superior to those obtained in undoped Cs2AgInCl6 NCs. The physical parameter, Kane energy, which is closely related to the magnitude of the oscillator strength, was estimated to be 25 eV and 26 eV for Er-DP and Yb-DP, respectively. As a proof-of-concept application, we further obtained the optical limiting onset and figure of merit to reveal their prospect as an optical limiter and in photonic switching application. With such emission and nonlinear optical properties, we anticipate that lanthanide-doped Cs2AgInCl6 NCs can be used for designing eco-friendly nonlinear optoelectronic/photonic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa