Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 13(9): e1002258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406915

RESUMO

The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease.


Assuntos
Moléculas de Adesão Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Bainha de Mielina/fisiologia , Fatores de Crescimento Neural/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Doença de Charcot-Marie-Tooth/enzimologia , Técnicas de Inativação de Genes , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos
2.
Brain ; 137(Pt 3): 668-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480485

RESUMO

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Fenótipo
3.
Brain ; 135(Pt 12): 3567-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171661

RESUMO

Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Proteínas dos Microfilamentos/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células de Schwann/metabolismo , Fatores Etários , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Estimulação Elétrica , Endocitose/efeitos dos fármacos , Endocitose/genética , Potencial Evocado Motor/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/genética , RNA Interferente Pequeno/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transferrina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Glia ; 60(10): 1518-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729949

RESUMO

Missense mutations affecting the LITAF gene (also known as SIMPLE) lead to the dominantly inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1C (CMT1C). In this study, we sought to determine the requirement of Litaf function in peripheral nerves, the only known affected tissue in CMT1C. We reasoned that this knowledge is a prerequisite for a thorough understanding of the underlying disease mechanism with regard to potential contributions by Litaf loss of function. In addition, we anticipated to obtain valuable information about the basic function of the Litaf protein in peripheral nerves. To address these issues, we generated mice without Litaf expression using gene disruption in embryonic stem cells and analyzed Litaf-deficient peripheral nerves during development, in maintenance, and after injury. Our results show that Litaf function is not absolutely required for peripheral nerve development and maintenance. In injured nerves, however, we found that lack of Litaf led to increased numbers of macrophages during Wallerian degeneration, accelerated myelin destruction, and the emergence of more axonal sprouts. Consistent with these data, the migration of Litaf-deficient macrophages was increased upon chemokine stimulation. We conclude that loss of Litaf function is unlikely to be a major contributor to CMT1C, but modulating effects of macrophages need to be considered in the etiology of the disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/metabolismo , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Fatores de Transcrição/metabolismo , Degeneração Walleriana/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação/genética , Bainha de Mielina/metabolismo , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura , Proteínas Nucleares/genética , Nervos Periféricos/ultraestrutura , Neuropatia Ciática/complicações , Neuropatia Ciática/patologia , Fatores de Transcrição/genética , Degeneração Walleriana/etiologia , Degeneração Walleriana/patologia
5.
J Neurosci ; 30(19): 6763-75, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463238

RESUMO

Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo remarkable differentiation both in morphology and gene expression patterns throughout lineage progression to myelinating and nonmyelinating phenotypes. Gene expression in SCs is particularly tightly regulated and critical for the organism, as highlighted by the fact that a 50% decrease or an increase to 150% of normal gene expression of some myelin proteins, like PMP22, results in peripheral neuropathies. Here, we selectively deleted Dicer and consequently gene expression regulation by mature miRNAs from Mus musculus SCs. Our results show that in the absence of Dicer, most SCs arrest at the promyelinating stage and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were increased, providing an additional potential basis for impaired myelination. A minor fraction of SCs, with some peculiar differences between sensory and motor fibers, overcame the myelination block and formed unusually thin myelin, in line with observed impaired neuregulin and AKT signaling. Surprisingly, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon-glia interactions.


Assuntos
Axônios/fisiologia , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , MicroRNAs/metabolismo , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Animais , Axônios/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Endorribonucleases/deficiência , Endorribonucleases/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Proteínas da Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Degeneração Neural/metabolismo , Receptor Notch1/metabolismo , Ribonuclease III , Fatores de Transcrição SOXB1/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/fisiologia , Nervo Isquiático/ultraestrutura , Raízes Nervosas Espinhais/fisiologia , Raízes Nervosas Espinhais/ultraestrutura , Fatores de Transcrição HES-1 , Gravação em Vídeo
6.
Elife ; 82019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30648534

RESUMO

Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.


Assuntos
Dinamina II/metabolismo , Oligodendroglia/metabolismo , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Morte Celular , Diferenciação Celular , Sobrevivência Celular , Citocinese , Camundongos , Mitose , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Transcriptoma/genética
7.
Nat Neurosci ; 14(4): 429-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21423190

RESUMO

Histone deacetylases (HDACs) are major epigenetic regulators. We show that HDAC1 and HDAC2 functions are critical for myelination of the peripheral nervous system. Using mouse genetics, we have ablated Hdac1 and Hdac2 specifically in Schwann cells, resulting in massive Schwann cell loss and virtual absence of myelin in mutant sciatic nerves. Expression of Sox10 and Krox20, the main transcriptional regulators of Schwann cell myelination, was greatly reduced. We demonstrate that in Schwann cells, HDAC1 and HDAC2 exert specific primary functions: HDAC2 activates the transcriptional program of myelination in synergy with Sox10, whereas HDAC1 controls Schwann cell survival by regulating the levels of active ß-catenin.


Assuntos
Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Fibras Nervosas Mielinizadas/enzimologia , Células de Schwann/enzimologia , Nervo Isquiático/enzimologia , Nervo Isquiático/crescimento & desenvolvimento , Ativação Transcricional/genética , Animais , Animais Recém-Nascidos , Comunicação Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , Camundongos , Camundongos Knockout , Mutação , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Ratos , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/fisiologia , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Nervo Isquiático/patologia , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa