Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 460(1-2): 175-193, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31367889

RESUMO

The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.


Assuntos
Organismos Aquáticos/química , Carcinogênese/patologia , Neoplasias Pancreáticas/patologia , Polifenóis/farmacologia , Acetatos/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Polifenóis/uso terapêutico , Alga Marinha/química
2.
J Biomed Sci ; 22: 28, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25898131

RESUMO

BACKGROUND: Identifying the drug-deliverables that target autophagy is crucial to finding a cure for pancreatic cancer (PC), as activated autophagy is associated with poor patient outcomes. Our recent studies recognized the anti-PC potential of an antioxidant-rich collection of seaweed polyphenols and identified potential compounds for the treatment of PC. Accordingly, we investigated whether such compounds could regulate autophagy in therapy-resistant PC cells in vitro and in residual PC in vivo. RESULTS: Human Panc-3.27 and MiaPaCa-2 cells were exposed to fractionated irradiation (FIR) with/without ethyl acetate (EA) polyphenol from Spatoglossum asperum (SA-EA), Padina tetrastromatica (PT-EA), or Hormophysa triquerta (HT-EA). The cells were subjected to QPCR to examine transcriptional alterations in the following autophagy functional regulators: ATG3, ATG5, ATG7, ATG12, LC3A, LC3B, Beclin, Myd88, HMGB1, Rage, and TLRs 1-9. Using a clinically relevant mouse model of residual PC, we use tissue microarray (TMA) and immunohistochemistry (IHC) procedures to investigate the potential of polyphenol(s) to target ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURIVIN after clinical radiotherapy. Radiation significantly increased the transcription of autophagy functional regulators in both cell lines. Seaweed polyphenols completely suppressed the transcription of all investigated autophagy regulators in both cell-lines. Gene silencing approach defined the role of LC3B in radiation-induced cell survival in this setting. TMA-IHC analysis revealed the complete regulation of ATG3, ATG5, ATG12, LC3A, LC3B, BECN1, and SURVIVIN in residual PC following SA-EA, PT-EA, and HT-EA treatment. CONCLUSIONS: These data demonstrate the autophagy blue print in therapy-resistant PC cells for the first time. Moreover, the data strongly suggest that the selected polyphenols could serve as effective adjuvants for current PC treatment modalities and may inhibit tumor relapse by comprehensively targeting therapy-orchestrated autophagy in residual cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Autofagia/efeitos dos fármacos , Phaeophyceae/química , Alga Marinha/química , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/fisiopatologia , Transplante Heterólogo
3.
Stem Cell Res Ther ; 6: 182, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26395574

RESUMO

INTRODUCTION: Therapy-associated onset of stemness-maintenance in surviving tumor-cells dictates tumor relapse/recurrence. Recently, we recognized the anti-pancreatic cancer (PC) potential of seaweed polyphenol manifolds and narrowed down three superior drug-deliverables that could serve as adjuvants and benefit PC cure. Utilizing the PC- cancer stem cells (PC-CSCs) grown ex vivo and mouse model of residual-PC, we investigated the benefits of seaweed polyphenols in regulating stemness-maintenance. METHODS: ALDH(+)CD44(+)CD24(+) PC-CSCs from Panc-1, Panc-3.27, MiaPaCa-2, or BxPC-3 cells-derived xenografts grown ex vivo were either mock-irradiated, exposed to fractionated irradiation (FIR, 2Gy/D for 5 days), treated with polyphenols (100 µg/ml) of Hormophysa triquerta (HT-EA), Spatoglossum asperum (SA-EA) or Padina tetrastromatica (PT-EA) with/without FIR were examined for cell viability, transcription of 93 stem-cell-related molecules (QPCR profiling). Polyphenol-dependent regulation of FIR-transactivated Oct4, Zic3, EIF4C, Nanog, and LIF (QPCR) and functional translation of Nanog, SOX2, and OCT3/4 (immunoblotting) were examined in Panc-1/Panc-3.27/MiaPaCa-2/BxPC-3-xenografts derived PC-CSCs. Effect of seaweed-polyphenols in the regulation of EMT (N-Cadherin), pluripotency- (SOX2, OCT3/4, Nanog) and stemness-maintenance (PI3KR1, LIF, CD44) in therapy (FIR, 2Gy/D for 5D/wk for 3-weeks) resistant residual tumors were examined by tissue microarray construction and automated immunohistochemistry. RESULTS: Ex vivo exposure of PC-CSCs to SA-EA, PT-EA and HT-EA exhibit dose-dependent inhibition of cell viability. FIR amplified the transcription of 69, 80, 74 and 77 stem-cell related genes in MiaPaCa-2-, Panc-1-, Panc-3.27- and BXPC3-established xenograft-derived ALDH(+)CD44(+)CD24(+)PC-CSCs. Treatment with SA-EA, PT-EA, or HT-EA completely suppressed FIR-activated stem-cell transcriptional machinery in ALDH(+)CD44(+)CD24(+)PC-CSCs established from MiaPaCa-2, Panc-1, Panc-3.27 and BXPC3 xenografts. QPCR validated EIF4C, OCT3/4, Nanog, LIF, and ZIC3 transcriptional profile outcomes. Nanog, Sox2, and OCT3/4 immunoblotting affirmed the PC-CSC radiosensitizing benefit of seaweed polyphenols. Residual-PC tissues microarrayed and immunostained after in vivo treatments recognized complete regulation of FIR-induced SOX2, OCT3/4, Nanog, LIF, CD44, PIK3R1, N-Cadherin, and E-Cadherin with SA-EA, PT-EA, and HT-EA. CONCLUSIONS: These data, for the first time, documented the EMT/stemness-maintenance in therapy-resistant PC-CSCs. Further, the data suggest that seaweed polyphenols may inhibit PC relapse/recurrence by targeting therapy-orchestrated stem-cell signaling in residual cells.


Assuntos
Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Phaeophyceae/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/patologia , Neoplasia Residual/radioterapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Biol Macromol ; 74: 447-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541359

RESUMO

The presence of occult metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutics for pancreatic cancer. Fucoidans from brown algae can be regarded as potential candidates in view of their antioxidant, anti-cancer and anti-angiogenic potential. Herein, we investigated the antioxidant and anti-cancer effects of fucoidans, sulfated polysaccharides from Turbinaria conoides (TCFE) in pancreatic cancer cell lines. TCFE exerted significant antioxidant activities against various free radicals. Significant inhibition of cell proliferation and, induction of apoptotic cell death were observed in pancreatic cancer cells in response to TCFE. Also, TCFE exhibited significant anti-angiogenic potential. Evidently, gelatin zymography revealed that TCFE inhibited matrix metalloproteases -2 and -9 activities in pancreatic cancer cells. These results clearly indicate that TCFE could serve as a potential 'deliverable' to alleviate pancreatic cancer progression by inhibiting tumor cell proliferation and angiogenesis.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Phaeophyceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias Pancreáticas , Polissacarídeos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa