Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Hum Brain Mapp ; 45(10): e26764, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994667

RESUMO

Presurgical planning prior to brain tumor resection is critical for the preservation of neurologic function post-operatively. Neurosurgeons increasingly use advanced brain mapping techniques pre- and intra-operatively to delineate brain regions which are "eloquent" and should be spared during resection. Functional MRI (fMRI) has emerged as a commonly used non-invasive modality for individual patient mapping of critical cortical regions such as motor, language, and visual cortices. To map motor function, patients are scanned using fMRI while they perform various motor tasks to identify brain networks critical for motor performance, but it may be difficult for some patients to perform tasks in the scanner due to pre-existing deficits. Connectome fingerprinting (CF) is a machine-learning approach that learns associations between resting-state functional networks of a brain region and the activations in the region for specific tasks; once a CF model is constructed, individualized predictions of task activation can be generated from resting-state data. Here we utilized CF to train models on high-quality data from 208 subjects in the Human Connectome Project (HCP) and used this to predict task activations in our cohort of healthy control subjects (n = 15) and presurgical patients (n = 16) using resting-state fMRI (rs-fMRI) data. The prediction quality was validated with task fMRI data in the healthy controls and patients. We found that the task predictions for motor areas are on par with actual task activations in most healthy subjects (model accuracy around 90%-100% of task stability) and some patients suggesting the CF models can be reliably substituted where task data is either not possible to collect or hard for subjects to perform. We were also able to make robust predictions in cases in which there were no task-related activations elicited. The findings demonstrate the utility of the CF approach for predicting activations in out-of-sample subjects, across sites and scanners, and in patient populations. This work supports the feasibility of the application of CF models to presurgical planning, while also revealing challenges to be addressed in future developments. PRACTITIONER POINTS: Precision motor network prediction using connectome fingerprinting. Carefully trained models' performance limited by stability of task-fMRI data. Successful cross-scanner predictions and motor network mapping in patients with tumor.


Assuntos
Conectoma , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Cuidados Pré-Operatórios , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Cuidados Pré-Operatórios/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Atividade Motora/fisiologia , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Aprendizado de Máquina , Adulto Jovem
2.
Cereb Cortex ; 33(12): 7702-7713, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977634

RESUMO

Studies have identified several brain regions whose activations facilitate attentional deployment via long-term memories. We analyzed task-based functional connectivity at the network and node-specific level to characterize large-scale communication between brain regions underlying long-term memory guided attention. We predicted default mode, cognitive control, and dorsal attention subnetworks would contribute differentially to long-term memory guided attention, such that network-level connectivity would shift based on attentional demands, requiring contribution of memory-specific nodes within default mode and cognitive control subnetworks. We expected that these nodes would increase connectivity with one another and with dorsal attention subnetworks during long-term memory guided attention. Additionally, we hypothesized connectivity between cognitive control and dorsal attention subnetworks facilitating external attentional demands. Our results identified both network-based and node-specific interactions that facilitate different components of LTM-guided attention, suggesting a crucial role across the posterior precuneus and restrosplenial cortex, acting independently from the divisions of default mode and cognitive control subnetworks. We found a gradient of precuneus connectivity, with dorsal precuneus connecting to cognitive control and dorsal attention regions, and ventral precuneus connecting across all subnetworks. Additionally, retrosplenial cortex showed increased connectivity across subnetworks. We suggest that connectivity from dorsal posterior midline regions is critical for the integration of external information with internal memory that facilitates long-term memory guided attention.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Atenção , Rede Nervosa/diagnóstico por imagem
3.
Neuroimage ; 281: 120360, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717715

RESUMO

The cerebellum is gaining scientific attention as a key neural substrate of cognitive function; however, individual differences in the cerebellar organization have not yet been well studied. Individual differences in functional brain organization can be closely tied to individual differences in brain connectivity. 'Connectome Fingerprinting' is a modeling approach that predicts an individual's brain activity from their connectome. Here, we extend 'Connectome Fingerprinting' (CF) to the cerebellum. We examined functional MRI data from 160 subjects (98 females) of the Human Connectome Project young adult dataset. For each of seven cognitive task paradigms, we constructed CF models from task activation maps and resting-state cortico-cerebellar functional connectomes, using a set of training subjects. For each model, we then predicted task activation in novel individual subjects, using their resting-state functional connectomes. In each cognitive paradigm, the CF models predicted individual subject cerebellar activity patterns with significantly greater precision than did predictions from the group average task activation. Examination of the CF models revealed that the cortico-cerebellar connections that carried the most information were those made with the non-motor portions of the cerebral cortex. These results demonstrate that the fine-scale functional connectivity between the cerebral cortex and cerebellum carries important information about individual differences in cerebellar functional organization. Additionally, CF modeling may be useful in the examination of patients with cerebellar dysfunction, since model predictions require only resting-state fMRI data which is more easily obtained than task fMRI.

4.
Cereb Cortex ; 32(4): 855-869, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34467399

RESUMO

Working memory (WM) supports the persistent representation of transient sensory information. Visual and auditory stimuli place different demands on WM and recruit different brain networks. Separate auditory- and visual-biased WM networks extend into the frontal lobes, but several challenges confront attempts to parcellate human frontal cortex, including fine-grained organization and between-subject variability. Here, we use differential intrinsic functional connectivity from 2 visual-biased and 2 auditory-biased frontal structures to identify additional candidate sensory-biased regions in frontal cortex. We then examine direct contrasts of task functional magnetic resonance imaging during visual versus auditory 2-back WM to validate those candidate regions. Three visual-biased and 5 auditory-biased regions are robustly activated bilaterally in the frontal lobes of individual subjects (N = 14, 7 women). These regions exhibit a sensory preference during passive exposure to task stimuli, and that preference is stronger during WM. Hierarchical clustering analysis of intrinsic connectivity among novel and previously identified bilateral sensory-biased regions confirms that they functionally segregate into visual and auditory networks, even though the networks are anatomically interdigitated. We also observe that the frontotemporal auditory WM network is highly selective and exhibits strong functional connectivity to structures serving non-WM functions, while the frontoparietal visual WM network hierarchically merges into the multiple-demand cognitive system.


Assuntos
Percepção Auditiva , Memória de Curto Prazo , Mapeamento Encefálico/métodos , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
5.
J Neurosci ; 41(5): 1033-1045, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33214320

RESUMO

fMRI research has revealed that cerebellar lobule VIIb/VIIIa exhibits load-dependent activity that increases with the number of items held in visual working memory (VWM). However, it remains unclear whether these cerebellar responses reflect processes specific to VWM or more general visual attentional mechanisms. To investigate this question, we examined whether cerebellar activity during the delay period of a VWM task is selective for stimuli held in working memory. A sample of male and female human subjects performed a VWM continuous report task in which they were retroactively cued to remember the direction of motion of moving dot stimuli. Cerebellar lobule VIIb/VIIIa delay-period activation accurately decoded the direction of the remembered stimulus, as did frontal and parietal regions of the dorsal attention network. Arguing against a motor explanation, no other cerebellar area exhibited stimulus specificity, including the oculomotor vermis, a key area associated with eye movement control. Finer-scale analysis revealed that the medial portion of lobule VIIb and to a lesser degree the lateral most portion of lobules VIIb and VIIIa, which exhibit robust resting state connectivity with frontal and parietal regions of the dorsal attention network, encoded the identity of the remembered stimulus, while intermediate portions of lobule VIIb/VIIIa did not. These findings of stimulus-specific coding of VWM within lobule VIIb/VIIIa indicate for the first time that the distributed network responsible for the encoding and maintenance of mnemonic representations extends to the cerebellum.SIGNIFICANCE STATEMENT There is considerable debate concerning where in the brain the contents of visual working memory (VWM) are stored. To date, this literature has primarily focused on the role of regions located within cerebral cortex. There is growing evidence for cerebellar involvement in higher-order cognitive functions including working memory. While the cerebellum has been previously shown to be recruited by VWM paradigms, it is unclear whether any portion of cerebellum actively encodes and maintains mnemonic representations. The present study demonstrates that cerebellar lobule VIIb/VIIIa activity patterns are selective for remembered stimuli and that this selectivity persists in the absence of perceptual input. These findings provide novel evidence for the participation of cerebellar structures in the persistent storage of visual information.


Assuntos
Cerebelo/fisiologia , Movimentos Oculares/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Masculino , Distribuição Aleatória
6.
Neuroimage ; 219: 117029, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526387

RESUMO

Visual attention and visual working memory tasks recruit a common network of lateral frontal cortical (LFC) and posterior parietal cortical (PPC) regions. Here, we examine finer-scale organization of this frontoparietal network. Three LFC regions recruited by visual cognition tasks, superior precentral sulcus (sPCS), inferior precentral sulcus (iPCS), and mid inferior frontal sulcus (midIFS) exhibit differential patterns of resting-state functional connectivity to PPC. A broad dorsomedial to ventrolateral gradient is observed, with sPCS connectivity dominating in the dorsomedial PPC band, iPCS dominating in the middle band, and midIFS dominating in the ventrolateral band. These connectivity-defined subregions of PPC capture differential task activation between a pair of visual attention and working memory tasks. The relative functional connectivity of sPCS and iPCS also varies along the rostral-caudal axis of the retinotopic regions of PPC. iPCS connectivity is relatively stronger near the IPS0/IPS1 and IPS2/IPS3 borders, especially on the lateral portions of these borders, which each preferentially encode central visual field representations. In contrast, sPCS connectivity is relatively stronger elsewhere in retinotopic IPS regions which preferentially encode peripheral visual field representations. These findings reveal fine-scale gradients in functional connectivity within the frontoparietal visual network that capture a high-degree of specificity in PPC functional organization.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa
7.
J Neurosci ; 38(6): 1511-1519, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29311140

RESUMO

Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information.SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Adulto , Movimentos Oculares/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
8.
J Neurophysiol ; 122(1): 232-240, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066602

RESUMO

The cortical dorsal attention network (DAN) is a set of parietal and frontal regions that support a wide variety of attentionally demanding tasks. Whereas attentional deployment reliably drives DAN activity across subjects, there is a large degree of variation in the activation pattern in individual subjects. We hypothesize that a subject's own idiosyncratic pattern of cortical DAN activity can be predicted from that subject's own unique pattern of functional connectivity. By modeling task activation as a function of whole brain connectivity patterns, we are able to define the connectivity fingerprints for the frontal and parietal DAN, and use it to predict a subject's characteristic DAN activation pattern with high accuracy. These predictions outperform the standard group-average benchmark and predict a subject's own activation pattern above and beyond predictions from another subject's connectivity pattern. Thus an individual's distinctive connectivity pattern accounts for substantial variance in DAN functional responses. Last, we show that the set of connections that predict cortical DAN responses, the frontal and parietal DAN connectivity fingerprints, is predominantly composed of other coactive regions, including regions outside of the DAN including occipital and temporal visual cortices. These connectivity fingerprints represent defining computational characteristics of the DAN, delineating which voxels are or are not capable of exerting top-down attentional bias to other regions of the brain. NEW & NOTEWORTHY The dorsal attention network (DAN) is a set of regions in frontoparietal cortex that reliably activate during attentional tasks. We designed computational models that predict the degree of an individual's DAN activation using their resting-state connectivity pattern alone. This uncovered the connectivity fingerprints of the DAN, which define it so well that we can predict how a voxel will respond to an attentional task given only its pattern of connectivity, with outstanding accuracy.


Assuntos
Atenção , Conectoma , Lobo Frontal/fisiologia , Modelos Neurológicos , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
9.
Cereb Cortex ; 28(8): 2935-2947, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968648

RESUMO

Long-term memory (LTM) helps to efficiently direct and deploy the scarce resources of the attentional system; however, the neural substrates that support LTM-guidance of visual attention are not well understood. Here, we present results from fMRI experiments that demonstrate that cortical and subcortical regions of a network defined by resting-state functional connectivity are selectively recruited for LTM-guided attention, relative to a similarly demanding stimulus-guided attention paradigm that lacks memory retrieval and relative to a memory retrieval paradigm that lacks covert deployment of attention. Memory-guided visuospatial attention recruited posterior callosal sulcus, posterior precuneus, and lateral intraparietal sulcus bilaterally. Additionally, 3 subcortical regions defined by intrinsic functional connectivity were recruited: the caudate head, mediodorsal thalamus, and cerebellar lobule VI/Crus I. Although the broad resting-state network to which these nodes belong has been referred to as a cognitive control network, the posterior cortical regions activated in the present study are not typically identified with supporting standard cognitive control tasks. We propose that these regions form a Memory-Attention Network that is recruited for processes that integrate mnemonic and stimulus-based representations to guide attention. These findings may have important implications for understanding the mechanisms by which memory retrieval influences attentional deployment.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Memória de Longo Prazo/fisiologia , Vias Neurais/fisiologia , Percepção Visual/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Movimentos Oculares/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rememoração Mental/fisiologia , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Estimulação Luminosa , Fatores de Tempo , Adulto Jovem
10.
J Neurosci ; 37(36): 8755-8766, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821668

RESUMO

The functionality of much of human lateral frontal cortex (LFC) has been characterized as "multiple demand" (MD) as these regions appear to support a broad range of cognitive tasks. In contrast to this domain-general account, recent evidence indicates that portions of LFC are consistently selective for sensory modality. Michalka et al. (2015) reported two bilateral regions that are biased for visual attention, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), interleaved with two bilateral regions that are biased for auditory attention, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). In the present study, we use fMRI to examine both the multiple-demand and sensory-bias hypotheses within caudal portions of human LFC (both men and women participated). Using visual and auditory 2-back tasks, we replicate the finding of two bilateral visual-biased and two bilateral auditory-biased LFC regions, corresponding to sPCS and iPCS and to tgPCS and cIFS, and demonstrate high within-subject reliability of these regions over time and across tasks. In addition, we assess MD responsiveness using BOLD signal recruitment and multi-task activation indices. In both, we find that the two visual-biased regions, sPCS and iPCS, exhibit stronger MD responsiveness than do the auditory-biased LFC regions, tgPCS and cIFS; however, neither reaches the degree of MD responsiveness exhibited by dorsal anterior cingulate/presupplemental motor area or by anterior insula. These results reconcile two competing views of LFC by demonstrating the coexistence of sensory specialization and MD functionality, especially in visual-biased LFC structures.SIGNIFICANCE STATEMENT Lateral frontal cortex (LFC) is known to play a number of critical roles in supporting human cognition; however, the functional organization of LFC remains controversial. The "multiple demand" (MD) hypothesis suggests that LFC regions provide domain-general support for cognition. Recent evidence challenges the MD view by demonstrating that a preference for sensory modality, vision or audition, defines four discrete LFC regions. Here, the sensory-biased LFC results are reproduced using a new task, and MD responsiveness of these regions is tested. The two visual-biased regions exhibit MD behavior, whereas the auditory-biased regions have no more than weak MD responses. These findings help to reconcile two competing views of LFC functional organization.


Assuntos
Atenção/efeitos da radiação , Percepção Auditiva/fisiologia , Cognição/fisiologia , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Mascaramento Perceptivo/fisiologia
11.
Neuroimage ; 183: 173-185, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30092348

RESUMO

The human cerebral cortex is estimated to comprise 200-300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using "connectome fingerprinting." Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.


Assuntos
Atenção/fisiologia , Conectoma/métodos , Individualidade , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
12.
J Neurosci ; 36(22): 6083-96, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251628

RESUMO

UNLABELLED: The "dorsal attention network" or "frontoparietal network" refers to a network of cortical regions that support sustained attention and working memory. Recent work has demonstrated that cortical nodes of the dorsal attention network possess intrinsic functional connections with a region in ventral cerebellum, in the vicinity of lobules VII/VIII. Here, we performed a series of task-based and resting-state fMRI experiments to investigate cerebellar participation in the dorsal attention network in humans. We observed that visual working memory and visual attention tasks robustly recruit cerebellar lobules VIIb and VIIIa, in addition to canonical cortical dorsal attention network regions. Across the cerebellum, resting-state functional connectivity with the cortical dorsal attention network strongly predicted the level of activation produced by attention and working memory tasks. Critically, cerebellar voxels that were most strongly connected with the dorsal attention network selectively exhibited load-dependent activity, a hallmark of the neural structures that support visual working memory. Finally, we examined intrinsic functional connectivity between task-responsive portions of cerebellar lobules VIIb/VIIIa and cortex. Cerebellum-to-cortex functional connectivity strongly predicted the pattern of cortical activation during task performance. Moreover, resting-state connectivity patterns revealed that cerebellar lobules VIIb/VIIIa group with cortical nodes of the dorsal attention network. This evidence leads us to conclude that the conceptualization of the dorsal attention network should be expanded to include cerebellar lobules VIIb/VIIIa. SIGNIFICANCE STATEMENT: The functional participation of cerebellar structures in nonmotor cortical networks remains poorly understood and is highly understudied, despite the fact that the cerebellum possesses many more neurons than the cerebral cortex. Although visual attention paradigms have been reported to activate cerebellum, many researchers have largely dismissed the possibility of a cerebellar contribution to attention in favor of a motor explanation, namely, eye movements. The present study demonstrates that a cerebellar subdivision (mainly lobules VIIb/VIIIa), which exhibits strong intrinsic functional connectivity with the cortical dorsal attention network, also closely mirrors a myriad of cortical dorsal attention network responses to visual attention and working memory tasks. This evidence strongly supports a reconceptualization of the dorsal attention network to include cerebellar lobules VIIb/VIIIa.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Análise por Conglomerados , Movimentos Oculares , Feminino , Lateralidade Funcional , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Estimulação Luminosa , Descanso , Adulto Jovem
13.
Neuroimage ; 162: 362-372, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830764

RESUMO

Human frontal cortex is commonly described as being insensitive to sensory modality, however several recent studies cast doubt on this view. Our laboratory previously reported two visual-biased attention regions interleaved with two auditory-biased attention regions, bilaterally, within lateral frontal cortex. These regions selectively formed functional networks with posterior visual-biased and auditory-biased attention regions. Here, we conducted a series of functional connectivity analyses to validate and expand this analysis to 469 subjects from the Human Connectome Project (HCP). Functional connectivity analyses replicated the original findings and revealed a novel hemispheric connectivity bias. We also subdivided lateral frontal cortex into 21 thin-slice ROIs and observed bilateral patterns of spatially alternating visual-biased and auditory-biased attention network connectivity. Finally, we performed a correlation difference analysis that revealed five additional bilateral lateral frontal regions differentially connected to either the visual-biased or auditory-biased attention networks. These findings leverage the HCP dataset to demonstrate that sensory-biased attention networks may have widespread influence in lateral frontal cortical organization.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Lobo Frontal/fisiologia , Vias Neurais/fisiologia , Percepção Visual/fisiologia , Adulto , Conectoma , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
14.
Cereb Cortex ; 26(5): 2059-2073, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25750253

RESUMO

Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Memória de Longo Prazo/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Adulto Jovem
15.
Cereb Cortex ; 26(3): 1302-1308, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26656996

RESUMO

Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during auditory spatial attention and working memory tasks, but prior work has not demonstrated that auditory activation occurs within visual spatial maps in parietal cortex. Here, we report both cognitive and anatomical distinctions in the auditory recruitment of visuotopically mapped regions within the superior parietal lobule. An auditory spatial STM task recruited anterior visuotopic maps (IPS2-4, SPL1), but an auditory temporal STM task with equivalent stimuli failed to drive these regions significantly. Behavioral and eye-tracking measures rule out task difficulty and eye movement explanations. Neither auditory task recruited posterior regions IPS0 or IPS1, which appear to be exclusively visual. These findings support the hypothesis of multisensory spatial processing in the anterior, but not posterior, superior parietal lobule and demonstrate that recruitment of these maps depends on auditory task demands.


Assuntos
Percepção Auditiva/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Medições dos Movimentos Oculares , Movimentos Oculares/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Adulto Jovem
16.
J Neurosci ; 35(32): 11358-63, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269642

RESUMO

Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. SIGNIFICANCE STATEMENT: The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention.


Assuntos
Atenção/fisiologia , Memória de Longo Prazo/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
17.
Cereb Cortex ; 24(3): 773-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180753

RESUMO

Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Adolescente , Adulto , Córtex Cerebral/irrigação sanguínea , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Julgamento , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Estimulação Luminosa , Máquina de Vetores de Suporte , Adulto Jovem
18.
medRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39281738

RESUMO

INTRODUCTION: Autosomal Dominant Alzheimer's Disease (ADAD) through genetic mutations can result in near complete expression of the disease. Tracking AD pathology development in an ADAD cohort of Presenilin-1 (PSEN1) E280A carriers' mutation has allowed us to observe incipient tau tangles accumulation as early as 6 years prior to symptom onset. METHODS: Resting-state functional Magnetic Resonance Imaging (fMRI) and Positron-Emission Tomography (PET) scans were acquired in a group of PSEN1 carriers (n=32) and non-carrier family members (n=35). We applied Connectome-based Predictive Modeling (CPM) to examine the relationship between the participant's functional connectome and their respective tau/amyloid-ß levels and cognitive scores (word list recall). RESULTS: CPM models strongly predicted tau concentrations and cognitive scores within the carrier group. The connectivity patterns between the temporal cortex, default mode network, and other memory networks were the most informative of tau burden. DISCUSSION: These results indicate that resting-state fMRI methods can complement PET methods in early detection and monitoring of disease progression in ADAD.

19.
J Neurosci ; 30(38): 12581-8, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861364

RESUMO

Visual short-term memory (VSTM) briefly maintains a limited sampling from the visual world. Activity in the intraparietal sulcus (IPS) tightly correlates with the number of items stored in VSTM. This activity may occur in or near to multiple distinct visuotopically mapped cortical areas that have been identified in IPS. To understand the topographic and spatial properties of VSTM, we investigated VSTM activity in visuotopic IPS regions using functional magnetic resonance imaging. VSTM drove areas IPS0-2, but largely spared IPS3-4. Under visual stimulation, these areas in both hemispheres code the contralateral visual hemifield. In contrast to the hemispheric symmetry observed with visual stimulation, an asymmetry emerged during VSTM with increasing memory load. The left hemisphere exhibited load-dependent activity only for contralateral memory items; right hemisphere activity reflected VSTM load regardless of visual-field location. Our findings demonstrate that VSTM induces a switch in spatial representation in right hemisphere IPS from contralateral to full-field coding. The load dependence of right hemisphere effects argues that memory-dependent and/or attention-dependent processes drive this change in spatial processing. This offers a novel means for investigating spatial-processing impairments in hemispatial neglect.


Assuntos
Lateralidade Funcional/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Análise de Variância , Atenção/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Desempenho Psicomotor/fisiologia
20.
J Vis ; 11(10)2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21965551

RESUMO

Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Sinais (Psicologia) , Humanos , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa