Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1859(12): 2435-2446, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28958779

RESUMO

G protein coupled receptors bind ligands that initiate intracellular signaling cascades via heterotrimeric G proteins. In this study, involvement of the N-terminal residues of yeast G-alpha (Gpa1p) with the C-terminal residues of a full-length or C-terminally truncated Ste2p were investigated using bioluminescence resonance energy transfer (BRET), a non-radiative energy transfer phenomenon where protein-protein interactions can be quantified between a donor bioluminescent molecule and a suitable acceptor fluorophore. Constitutive and position-dependent BRET signal was observed in the absence of agonist (α-factor). Upon the activation of the receptors with α-factor, no significant change in BRET signal was observed. The location of Ste2p-Gpa1p heterodimer was investigated using confocal fluorescence microscopy and bimolecular fluorescence complementation (BiFC) assay, a technique where two non-fluorescent fragments of a fluorescent protein reassemble in vivo to restore fluorescence property thereby directly reporting a protein-protein interaction. BiFC experiments resulted in a dimerization signal intracellularly during biosynthesis on the endoplasmic reticulum (ER) and on the plasma membrane (PM). The constitutive BRET and BiFC signals observed on ER between Ste2p and Gpa1p in their quiescent and activated states are indicative of pre-coupling between these two proteins. This study is the first to show that the extreme N-terminus of yeast G protein alpha subunit is in close proximity to its receptor. The data suggests a pre-coupled heterodimer prior to receptor activation. The images presented in this study are the first direct in vivo evidence showing the localization of receptor - G protein heterodimers during biosynthesis and before reaching the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fator de Acasalamento/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Membrana Celular/química , Retículo Endoplasmático/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Fator de Acasalamento/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores de Fator de Acasalamento/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
2.
Biochim Biophys Acta Biomembr ; 1859(5): 698-711, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073700

RESUMO

Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.


Assuntos
Membrana Celular/química , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores de Fator de Acasalamento/química , Proteínas de Saccharomyces cerevisiae/química
3.
Basic Clin Pharmacol Toxicol ; 133(4): 331-341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056198

RESUMO

GPR56/ADGRG1 is an adhesion G protein-coupled receptor (GPCR) and mutations on this receptor cause cortical malformation due to the over-migration of neural progenitor cells on brain surface. At pial surface, GPR56 interacts with collagen III, induces Rho-dependent activation through Gα12/13 and inhibits the neuronal migration. In human glioma cells, GPR56 inhibits cell migration through Gαq/11 -dependent Rho pathway. GPR56-tetraspanin complex is known to couple Gαq/11 . GPR56 is an aGPCR that couples with various G proteins and signals through different downstream pathways. In this study, bilateral frontoparietal polymicrogyria (BFPP) mutants disrupting GPR56 function but remaining to be expressed on plasma membrane were used to study receptor signalling through Gα12 , Gα13 and Gα11 with BRET biosensors. GPR56 showed coupling with all three G proteins and activated heterotrimeric G protein signalling upon stimulation with Stachel peptide. However, BFPP mutants showed different signalling defects for each G protein indicative of distinct activation and signalling properties of GPR56 for Gα12 , Gα13 or Gα11 . ß-arrestin recruitment was also investigated following the activation of GPR56 with Stachel peptide using BRET biosensors. N-terminally truncated GPR56 showed enhanced ß-arrestin recruitment; however, neither wild-type receptor nor BFPP mutants gave any measurable recruitment upon Stachel stimulation, pointing different activation mechanisms for ß-arrestin involvement.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Mutação , Proteínas de Ligação ao GTP/metabolismo , Peptídeos , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
4.
J Phys Chem B ; 125(33): 9526-9536, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34433281

RESUMO

Oligomerization of G protein-coupled receptors (GPCRs) may play important roles in maturation, internalization, signaling, and pharmacology of these receptors. However, the nature and extent of their oligomerization is still under debate. In our study, Ste2p, a yeast mating pheromone GPCR, was tagged with enhanced green fluorescent protein (EGFP), mCherry, and with split florescent protein fragments at the receptor C-terminus. The Förster resonance energy transfer (FRET) technique was used to detect receptors' oligomerization by calculating the energy transfer from EGFP to mCherry. Stimulation of Ste2p oligomers with the receptor ligand did not result in any significant change on observed FRET values. The bimolecular fluorescence complementation (BiFC) assay was combined with FRET to further investigate the tetrameric complexes of Ste2p. Our results suggest that in its quiescent (nonligand-activated) state, Ste2p is found at least as a tetrameric complex on the plasma membrane. Intriguingly, receptor tetramers in their active form showed a significant increase in FRET. This study provides a direct in vivo visualization of Ste2p tetramers and the pheromone effect on the extent of the receptor oligomerization.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator de Acasalamento/genética , Receptores de Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Pharmacol ; 75(5): 1137-48, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19237585

RESUMO

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha4)(3)(beta2)(2) versus (alpha4)(2)(beta2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha4, V287L, and V287M in beta2. alpha4 and beta2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the alpha4 and beta2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (alpha4)(3)(beta2)(2) carrying fluorescent alpha4 subunits were significantly higher than for (alpha4)(2)(beta2)(3); the converse was found for fluorescent beta2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (alpha4)(3)(beta2)(2) receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 muM) exposure increased the proportion of (alpha4)(2)(beta2)(3) in WT receptors and also returned subunit stoichiometry to WT levels for alpha4S248F and beta2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.


Assuntos
Epilepsia do Lobo Frontal/genética , Mutação , Nicotina/farmacologia , Receptores Nicotínicos/genética , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Fotodegradação , Subunidades Proteicas , Receptores Nicotínicos/química
6.
J Gen Physiol ; 137(1): 59-79, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21187334

RESUMO

The up-regulation of α4ß2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person's history of tobacco use and his or her susceptibility to Parkinson's disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4ß2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4ß2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)(2)(ß2)(3) stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a ß2(enhanced-ER-export) mutant subunit that mimics two regions of the ß4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4ß2(enhanced-ER-export) nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4ß2(enhanced-ER-export) receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4ß2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the ß2(enhanced-ER-export) subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.


Assuntos
Chaperonas Moleculares/metabolismo , Nicotina/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia/métodos , Microscopia de Fluorescência/métodos , Chaperonas Moleculares/genética , Subunidades Proteicas , Transporte Proteico/efeitos dos fármacos , Receptores Nicotínicos/biossíntese , Tabagismo/genética , Tabagismo/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
7.
AAPS J ; 11(1): 167-77, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19280351

RESUMO

The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.


Assuntos
Descoberta de Drogas , Retículo Endoplasmático/efeitos dos fármacos , Modelos Biológicos , Nicotina/farmacologia , Receptores Nicotínicos/biossíntese , Acetilcolina/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Epilepsia do Lobo Frontal/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurotransmissores/fisiologia , Nicotina/farmacocinética , Doença de Parkinson/prevenção & controle , Receptores Nicotínicos/genética , Receptores Nicotínicos/fisiologia , Fumar/metabolismo , Tabagismo/genética , Tabagismo/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
Biochemistry ; 43(41): 13193-203, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15476413

RESUMO

Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) and binding affinities of all analogues for the alpha-factor receptor (Ste2p) were determined. Two of the analogues that were tested, Bpa(1) and Bpa(5), showed 3-4-fold lower affinity than the alpha-factor, whereas Bpa(3) and Bpa(13) had 7-12-fold lower affinities. Bpa(8) competed poorly with [(3)H]-alpha-factor for Ste2p. All of the analogues tested except Bpa(8) had detectable halos in the growth arrest assay, indicating that these analogues are alpha-factor agonists. Cross-linking studies demonstrated that [Bpa(1)]-alpha-factor, [Bpa(3)]-alpha-factor, [Bpa(5)]-alpha-factor, and [Bpa(13)]-alpha-factor were cross-linked to Ste2p; the biotin tag on the pheromone was detected by a NeutrAvidin-HRP conjugate on Western blots. Digestion of Bpa(1), Bpa(3), and Bpa(13) cross-linked receptors with chemical and enzymatic reagents suggested that the N-terminus of the pheromone interacts with a binding domain consisting of residues from the extracellular ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs and that there is a direct interaction between the position 13 side chain and a region of Ste2p (F55-R58) at the extracellular end of TM1. The results further define the sites of interaction between Ste2p and the alpha-factor, allowing refinement of a model for the pheromone bound to its receptor.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Peptídeos/metabolismo , Fenilalanina/análogos & derivados , Feromônios/metabolismo , Marcadores de Fotoafinidade/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ligação Competitiva , Biotina/metabolismo , Hidrólise , Ligantes , Fator de Acasalamento , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/síntese química , Fenilalanina/metabolismo , Feromônios/síntese química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Fator de Acasalamento , Receptores de Peptídeos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/síntese química , Fatores de Transcrição/química , Tripsina/metabolismo , Raios Ultravioleta
9.
Biochemistry ; 42(10): 3004-17, 2003 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-12627966

RESUMO

The alpha-factor receptor of the yeast Saccharomyces cerevisiae encoded by the STE2 gene is a member of the large family of G protein-coupled receptors (GPCRs) that mediate multiple signal transduction pathways. The third intracellular loop of GPCRs has been identified as a likely site of interaction with G proteins. To determine the extent of allowed substitutions within this loop, we subjected a stretch of 21 amino acids (Leu228-Leu248) to intensive random mutagenesis and screened multiply substituted alleles for receptor function. The 91 partially functional mutant alleles that were recovered contained 96 unique amino acid substitutions. Every position in this region can be replaced with at least two other types of amino acids without a significant effect on function. The tolerance for nonconservative substitutions indicates that activation of the G protein by ligand-bound receptors involves multiple intramolecular interactions that do not strongly depend on particular sequence elements. Many of the functional mutant alleles exhibit greater than normal levels of signaling, consistent with an inhibitory role for the third intracellular loop. Removal of increasing numbers of positively charged residues from the loop by site-directed mutagenesis causes a progressive loss of signaling function, indicating that the overall net charge of the loop is important for receptor function. Introduction of negatively charged residues also leads to a reduced level of signaling. The defects in signaling caused by substitution of charged amino acids are not caused by changes in the abundance of receptors at the cell surface.


Assuntos
Sequência de Aminoácidos/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Líquido Intracelular/fisiologia , Feromônios/fisiologia , Receptores de Peptídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição , Substituição de Aminoácidos/genética , Análise Mutacional de DNA/métodos , Líquido Intracelular/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Feromônios/química , Feromônios/genética , Conformação Proteica , Receptores de Fator de Acasalamento , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Eletricidade Estática
10.
Biochemistry ; 41(46): 13681-9, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12427030

RESUMO

To identify interactions between Ste2p, a G protein-coupled receptor of the yeast Saccharomyces cerevisiae, and its tridecapeptide ligand, alpha-factor (WHWLQLKPGQPMY), a variety of alpha-factor analogues were used in conjunction with site-directed mutagenesis of a targeted portion of Ste2p transmembrane domain six. Alanine substitution of residues in the 262-270 region of Ste2p did not affect pheromone binding or signal transduction, except for the Y266A mutant, which did not transduce signal yet exhibited only a small decrease in alpha-factor binding affinity. Substitutions with Ser, Leu, or Lys at Y266 also generated signaling-defective receptors. In contrast, Phe or Trp substitution at Y266 retained receptor function, suggesting that aromaticity at this position was critical. When coexpressed with WT receptor, the Y266A receptor exhibited a strong dominant-negative phenotype, indicating that this mutant bound G protein. A partial tryptic digest revealed that, in the presence of agonist, a different digestion profile for Y266A receptor was generated in comparison to that for WT receptor. The difference in trypsin-sensitive sites and their negative dominance indicated that the Y266A receptor was not able to switch into an "activated" conformation upon ligand binding. In comparison to WT Ste2p, the mutantY266A receptor showed increased binding affinity for N-terminal, alanine-substituted alpha-factor analogues (residues 1-4) and the antagonist [desW(1),desH(2)]alpha-factor. A substantial decrease in affinity was observed for alpha-factor analogues with Ala substitutions from residues 5-13. The results suggest that Y266 is part of the binding pocket that recognizes the N-terminal portion of alpha-factor and is involved in the transformation of Ste2p into an activated state upon agonist binding.


Assuntos
Peptídeos/metabolismo , Receptores de Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Fator de Acasalamento , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Fator de Acasalamento , Receptores de Peptídeos/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa