RESUMO
The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Biomarcadores , Progressão da DoençaRESUMO
Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by ß-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of ß-amyloid (Aß) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aß accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aß*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms.
Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Animais , Humanos , Camundongos , Camundongos TransgênicosRESUMO
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Neuroglia , Núcleo Supraquiasmático , Modelos AnimaisRESUMO
The key to current Alzheimer's disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-ß (Aß), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients' bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
RESUMO
Alzheimer's disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory-perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in-depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post-mortem OB specimens obtained from six AD patients and seven healthy age-matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aß protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aß, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.
Assuntos
Doença de Alzheimer , Bulbo Olfatório , Doença de Alzheimer/patologia , Autopsia , Humanos , Bulbo Olfatório/metabolismo , OlfatoRESUMO
BACKGROUND: Immune activation is a significant contributor to HIV pathogenesis and disease progression. In virally-suppressed individuals on ART, low-level immune activation has been linked to several non-infectious comorbid diseases. However, studies have not been systematically performed in sub-Saharan Africa and thus the impact of demographics, ART and regional endemic co-infections on immune activation is not known. We therefore comprehensively evaluated in a large multinational African cohort markers for immune activation and its distribution in various settings. METHODS: 2747 specimens from 2240 people living with HIV (PLWH) and 477 without HIV from the observational African Cohort Study (AFRICOS) were analyzed for 13 immune parameters. Samples were collected along with medical history, sociodemographic and comorbidity data at 12 HIV clinics across 5 programs in Uganda, Kenya, Tanzania and Nigeria. Data were analyzed with univariate and multivariate methods such as random forests and principal component analysis. FINDINGS: Immune activation was markedly different between PLWH with detectable viral loads, and individuals without HIV across sites. Among viremic PLWH, we found that all immune parameters were significantly correlated with viral load except for IFN-α. The overall inflammatory profile was distinct between men and women living with HIV, in individuals off ART and with HIV viremia. We observed stronger differences in the immune activation profile with increasing viremia. Using machine learning methods, we found that geographic differences contributed to unique inflammatory profiles. We also found that among PLWH, age and the presence of infectious and/or noninfectious comorbidities showed distinct inflammatory patterns, and biomarkers may be used to predict the presence of some comorbidities. INTERPRETATION: Our findings show that chronic immune activation in HIV-1 infection is influenced by HIV viral load, sex, age, region and ART use. These predictors, as well as associations among some biomarkers and coinfections, influence biomarkers associated with noncommunicable diseases. FUNDING: This work was supported by the President's Emergency Plan for AIDS Relief via a cooperative agreement between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense [W81XWH-11-2-0174, W81XWH-18-2-0040]. The investigators have adhered to the policies for protection of human subjects as prescribed in AR 70-25. This article was prepared while Michael A. Eller was employed at Henry M. Jackson Foundation for the Advancement of Military Medicine for the U.S. Military HIV Research Program. The views expressed are those of the authors and should not be construed to represent the positions of the US Army or the Department of Defense. The opinions expressed in this article are the author's own, and do not reflect the view of the National Institutes of Health, the U.S. Department of Health and Human Services, or the U.S. government.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Masculino , Viremia/tratamento farmacológicoRESUMO
Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-ß production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. [BMB Reports 2021; 54(6): 295-304].
Assuntos
Doença de Alzheimer/complicações , Vias Neurais/patologia , Doenças Neurodegenerativas/patologia , Transtornos do Olfato/patologia , Condutos Olfatórios/patologia , Animais , Humanos , Doenças Neurodegenerativas/etiologia , Transtornos do Olfato/etiologiaRESUMO
Detecting Alzheimer's disease (AD) is an important step in preventing pathological brain damage. Working memory (WM)-related network modulation can be a pathological feature of AD, but is usually modulated by untargeted cognitive processes and individual variance, resulting in the concealment of this key information. Therefore, in this study, we comprehensively investigated a new neuromarker, named "refined network," in a prefrontal cortex (PFC) that revealed the pathological features of AD. A refined network was acquired by removing unnecessary variance from the WM-related network. By using a functional near-infrared spectroscopy (fNIRS) device, we evaluated the reliability of the refined network, which was identified from the three groups classified by AD progression: healthy people (N=31), mild cognitive impairment (N=11), and patients with AD (N=18). As a result, we identified edges with significant correlations between cognitive functions and groups in the dorsolateral PFC. Moreover, the refined network achieved a significantly correlating metric with neuropsychological test scores, and a remarkable three-class classification accuracy (95.0%). These results implicate the refined PFC WM-related network as a powerful neuromarker for AD screening.
RESUMO
BACKGROUND: Hyposmia in Alzheimer's disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-ß (Aß), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. METHODS: Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. RESULTS: We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-ß (Aß) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. CONCLUSIONS: Our results showed that partial and asymmetrical accumulation of Aß coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN's loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.
Assuntos
Neurônios Receptores Olfatórios , Peptídeos beta-Amiloides/metabolismo , Animais , Axônios/metabolismo , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , OlfatoRESUMO
Despite clinical evidence indicating a close relationship between olfactory dysfunction and Alzheimer's disease (AD), further investigations are warranted to determine the diagnostic potential of nasal surrogate biomarkers for AD. In this study, we first identified soluble amyloid-ß (Aß), the key biomarker of AD, in patient nasal discharge using proteomic analysis. Then, we profiled the significant differences in Aß oligomers level between patient groups with mild or moderate cognitive decline (n = 39) and an age-matched normal control group (n = 21) by immunoblot analysis and comparing the levels of Aß by a self-standard method with interdigitated microelectrode sensor systems. All subjects received the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), and the Global Deterioration Scale (GDS) for grouping. We observed higher levels of Aß oligomers in probable AD subjects with lower MMSE, higher CDR, and higher GDS compared to the normal control group. Moreover, mild and moderate subject groups could be distinguished based on the increased composition of two oligomers, 12-mer Aß*56 and 15-mer AßO, respectively. The longitudinal cohort study confirmed that the cognitive decline of mild AD patients with high nasal discharge Aß*56 levels advanced to the moderate stage within three years. Our clinical evidence strongly supports the view that the presence of oligomeric Aß proteins in nasal discharge is a potential surrogate biomarker of AD and an indicator of cognitive decline progression.
Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Disfunção Cognitiva/diagnóstico , Mucosa Olfatória/química , Olfato/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Biomarcadores/análise , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes de Estado Mental e Demência , Mucosa Olfatória/fisiopatologia , Tomografia por Emissão de Pósitrons , ProteômicaRESUMO
Olfactory dysfunction is a common symptom associated with neurodegenerative diseases including Alzheimer's disease (AD). Although evidence exists to suggest that peripheral olfactory organs are involved in the olfactory dysfunction that accompanies AD pathology, the underlying mechanisms are not fully understood. As confirmed using behavioral tests, transgenic mice overexpressing a Swedish mutant form of human amyloid precursor proteins exhibited olfactory impairments prior to evidence of cognitive impairment. By measuring the expression of tyrosine hydroxylase, we observed that specific regions of the olfactory bulb (OB) in Tg2576 mice, specifically the ventral portion exhibited significant decreases in the number of dopaminergic neurons in the periglomerular regions from the early stage of AD. To confirm the direct linkage between these olfactory impairments and AD-related pathology, ß-site amyloid precursor protein cleaving enzyme 1 (BACE1)-the initiating enzyme in Aß genesis-and ß-amyloid peptide (Aß), hallmarks of AD were analyzed. We found that an increase in BACE1 expression coincided with an elevation of amyloid-ß (Aß) oligomers in the ventral region of OB. Moreover, olfactory epithelium (OE), in particular the ectoturbinate in which axons of olfactory sensory neurons (OSNs) have direct connections with the dendrites of mitral/tufted cells in the ventral part of OB, exhibited significant decreases in both thickness and cell number even at early stages. This result suggests that Aß oligomer toxicity in the OE may have induced a decline in the number of OSNs and functional impairment of the olfactory system. We first demonstrated that disproportionate levels of regional damage in the peripheral olfactory system may be a specific symptom of AD with Aß oligomer accumulation occurring prior to damage within the CNS. This regional damage in the olfactory system early in the progression of AD may be closely related to AD-related pathological abnormality and olfactory dysfunction found in AD patients.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Nervo Olfatório/citologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Nervo Olfatório/metabolismoRESUMO
Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain-blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have similar protective effects against excitotoxicity.