Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): e3, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37941140

RESUMO

Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA/RNA sequences have less information content than 20-letter coded protein sequences. While BERT (Bidirectional Encoder Representations from Transformers)-like language models have been developed for RNA, they are ineffective at capturing the evolutionary information from homologous sequences because unlike proteins, RNA sequences are less conserved. Here, we have developed an unsupervised multiple sequence alignment-based RNA language model (RNA-MSM) by utilizing homologous sequences from an automatic pipeline, RNAcmap, as it can provide significantly more homologous sequences than manually annotated Rfam. We demonstrate that the resulting unsupervised, two-dimensional attention maps and one-dimensional embeddings from RNA-MSM contain structural information. In fact, they can be directly mapped with high accuracy to 2D base pairing probabilities and 1D solvent accessibilities, respectively. Further fine-tuning led to significantly improved performance on these two downstream tasks compared with existing state-of-the-art techniques including SPOT-RNA2 and RNAsnap2. By comparison, RNA-FM, a BERT-based RNA language model, performs worse than one-hot encoding with its embedding in base pair and solvent-accessible surface area prediction. We anticipate that the pre-trained RNA-MSM model can be fine-tuned on many other tasks related to RNA structure and function.


Assuntos
Aprendizado de Máquina , RNA , Alinhamento de Sequência , DNA/química , Proteínas , RNA/química , Solventes
2.
Plant Cell Environ ; 47(5): 1606-1624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282268

RESUMO

Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.


Assuntos
Arabidopsis , Gossypium , Gossypium/fisiologia , Tolerância ao Sal/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino , Estresse Fisiológico , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Genomics ; 24(1): 474, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608304

RESUMO

BACKGROUND: The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS: In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS: The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.


Assuntos
Gossypium , Gossypium/enzimologia , Gossypium/genética , Evolução Molecular , Filogenia , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas
4.
Mol Genet Genomics ; 298(3): 755-766, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027022

RESUMO

Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.


Assuntos
Gossypium , Gossipol , Gossypium/metabolismo , Gossipol/metabolismo , Filogenia , Genes myb/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Dairy Sci ; 106(8): 5253-5265, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414601

RESUMO

Whey protein powder (PP), which is mainly derived from bovine milk, is rich in milk fat globule membrane (MFGM). The MGFM has been shown to play a role in promoting neuronal development and cognition in the infant brain. However, its role in Alzheimer's disease (AD) has not been elucidated. Here, we showed that the cognitive ability of 3×Tg-AD mice (a triple-transgenic mouse model of AD) could be improved by feeding PP to mice for 3 mo. In addition, PP ameliorated amyloid peptide deposition and tau hyperphosphorylation in the brains of AD mice. We found that PP could alleviate AD pathology by inhibiting neuroinflammation through the peroxisome proliferator-activated receptor γ (PPARγ)-nuclear factor-κB signaling pathway in the brains of AD mice. Our study revealed an unexpected role of PP in regulating the neuroinflammatory pathology of AD in a mouse model.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Doença de Alzheimer/veterinária , PPAR gama , Proteínas do Soro do Leite , Pós , Doenças Neuroinflamatórias/veterinária , Proteínas tau/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Modelos Animais de Doenças
6.
BMC Bioinformatics ; 23(1): 91, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291940

RESUMO

BACKGROUND: Upland cotton provides the most natural fiber in the world. During fiber development, the quality and yield of fiber were influenced by gene transcription. Revealing sequence features related to transcription has a profound impact on cotton molecular breeding. We applied convolutional neural networks to predict gene expression status based on the sequences of gene transcription start regions. After that, a gradient-based interpretation and an N-adjusted kernel transformation were implemented to extract sequence features contributing to transcription. RESULTS: Our models had approximate 80% accuracies, and the area under the receiver operating characteristic curve reached over 0.85. Gradient-based interpretation revealed 5' untranslated region contributed to gene transcription. Furthermore, 6 DOF binding motifs and 4 transcription activator binding motifs were obtained by N-adjusted kernel-motif transformation from models in three developmental stages. Apart from 10 general motifs, 3 DOF5.1 genes were also detected. In silico analysis about these motifs' binding proteins implied their potential functions in fiber formation. Besides, we also found some novel motifs in plants as important sequence features for transcription. CONCLUSIONS: In conclusion, the N-adjusted kernel transformation method could interpret convolutional neural networks and reveal important sequence features related to transcription during fiber development. Potential functions of motifs interpreted from convolutional neural networks could be validated by further wet-lab experiments and applied in cotton molecular breeding.


Assuntos
Redes Neurais de Computação
7.
BMC Plant Biol ; 21(1): 102, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602142

RESUMO

BACKGROUND: Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear. RESULTS: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. CONCLUSIONS: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate 'glandless-seed' and 'glanded-plant' cotton cultivar.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/química , Gossypium/metabolismo , Gossipol/análise , Gossipol/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Small ; 17(29): e2101508, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110682

RESUMO

Abnormal elevated levels of cytokines such as interferon (IFN), interleukin (IL), and tumor necrosis factor (TNF), are considered as one of the prognosis biomarkers for indicating the progression to severe or critical COVID-19. Hence, it is of great significance to develop devices for monitoring their levels in COVID-19 patients, and thus enabling detecting COVID-19 patients that are worsening and to treat them before they become critically ill. Here, an intelligent aptameric dual channel graphene-TWEEN 80 field effect transistor (DGTFET) biosensing device for on-site detection of IFN-γ, TNF-α, and IL-6 within 7 min with limits of detection (LODs) of 476 × 10-15 , 608 × 10-15 , or 611 × 10-15 m respectively in biofluids is presented. Using the customized Android App together with this intelligent device, asymptomatic or mild COVID-19 patients can have a preliminary self-detection of cytokines and get a warning reminder while the condition starts to deteriorate. Also, the device can be fabricated on flexible substrates toward wearable applications for moderate or even critical COVID-19 cases for consistently monitoring cytokines under different deformations. Hence, the intelligent aptameric DGTFET biosensing device is promising to be used for point-of-care applications for monitoring conditions of COVID-19 patients who are in different situations.


Assuntos
COVID-19 , Grafite , Biomarcadores , Síndrome da Liberação de Citocina , Citocinas , Humanos , Interleucina-6 , SARS-CoV-2
9.
Planta ; 255(1): 23, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923605

RESUMO

MAIN CONCLUSION: GL2-interacting-repressor (GIR) family members may contribute to fiber/fuzz formation via a newly discovered unique pathway in Gossypium arboreum. There are similarities between cotton fiber development and the formation of trichomes and root hairs. The GL2-interacting-repressors (GIRs) are crucial regulators of root hair and trichome formation. The GaFzl gene, annotated as GaGIR1, is negatively associated with trichome development and fuzz initiation. However, there is relatively little available information regarding the other GIR genes in cotton, especially regarding their effects on cotton fiber development. In this study, 21 GIR family genes were identified in the diploid cotton species Gossypium arboreum; these genes were divided into three groups. The GIR genes were characterized in terms of their phylogenetic relationships, structures, chromosomal distribution and evolutionary dynamics. These GIR genes were revealed to be unequally distributed on 12 chromosomes in the diploid cotton genome, with no GIR gene detected on Ga06. The cis-acting elements in the promoter regions were predicted to be responsive to light, phytohormones, defense activities and stress. The transcriptomic data and qRT-PCR results revealed that most GIR genes were not differentially expressed between the wild-type control and the fuzzless mutant line. Moreover, 14 of 21 family genes were expressed at high levels, indicating these genes may play important roles during fiber development and fuzz formation. Furthermore, Ga01G0231 was predominantly expressed in root samples, suggestive of a role in root hair formation rather than in fuzz initiation and development. The results of this study have enhanced our understanding of the GIR genes and their potential utility for improving cotton fiber through breeding.


Assuntos
Fibra de Algodão , Filogenia
10.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066899

RESUMO

Plant NAC (NAM, ATAF1/2, and CUC2) family is involved in various development processes including Programmed Cell Death (PCD) associated development. However, the relationship between NAC family and PCD-associated cotton pigment gland development is largely unknown. In this study, we identified 150, 153 and 299 NAC genes in newly updated genome sequences of G. arboreum, G. raimondii and G. hirsutum, respectively. All NAC genes were divided into 8 groups by the phylogenetic analysis and most of them were conserved during cotton evolution. Using the vital regulator of gland formation GhMYC2-like as bait, expression correlation analysis screened out 6 NAC genes which were low-expressed in glandless cotton and high-expressed in glanded cotton. These 6 NAC genes acted downstream of GhMYC2-like and were induced by MeJA. Silencing CGF1(Cotton Gland Formation1), another MYC-coding gene, caused almost glandless phenotype and down-regulated expression of GhMYC2-like and the 6 NAC genes, indicating a MYC-NAC regulatory network in gland development. In addition, predicted regulatory mechanism showed that the 6 NAC genes were possibly regulated by light, various phytohormones and transcription factors as well as miRNAs. The interaction network and DNA binding sites of the 6 NAC transcription factors were also predicted. These results laid the foundation for further study of gland-related genes and gland development regulatory network.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Gossypium/anatomia & histologia , Gossypium/genética , Pigmentação/genética , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica , Perfilação da Expressão Gênica , Inativação Gênica , Genes de Plantas , Modelos Biológicos , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Sintenia/genética
11.
BMC Genomics ; 21(1): 470, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640982

RESUMO

BACKGROUND: Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS: In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION: This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.


Assuntos
Cromossomos de Plantas , Gossypium/genética , Mapeamento Cromossômico , Evolução Molecular , Genes de Plantas , Sintenia , Fatores de Transcrição/genética
12.
BMC Plant Biol ; 20(1): 223, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429837

RESUMO

BACKGROUND: Expansins (EXPs), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family in cotton are still unknown. RESULTS: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum. These genes were classified into four subfamilies, including 67 GhEXPAs, 8 GhEXPBs, 6 GhEXLAs, and 12 GhEXLBs, and divided into 15 subgroups. The 93 expansin genes are distributed over 24 chromosomes, excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons, and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns among different stages of cotton fibre development. Among them, 3 genes (GhEXPA4o, GhEXPA1A, and GhEXPA8h) were highly expressed in the initiation stage, 9 genes (GhEXPA4a, GhEXPA13a, GhEXPA4f, GhEXPA4q, GhEXPA8f, GhEXPA2, GhEXPA8g, GhEXPA8a, and GhEXPA4n) had high expression during the fast elongation stage, and GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. CONCLUSIONS: Our results provide a solid basis for further elucidation of the biological functions of expansin genes in relation to cotton fibre development and valuable genetic resources for future crop improvement.


Assuntos
Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/genética , Parede Celular/genética , Genes de Plantas , Gossypium/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo
13.
Opt Express ; 27(11): 15309-15317, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163728

RESUMO

Here, we demonstrate a polarized high-energy soliton synthesis technique for deep-brain 3-photon microscopy (3PM) excited at the 1700-nm window. Through coherent combining, we generate linearly polarized high-energy solitons whose energy is twice as high than those of each linearly polarized solitons. Due to the nonlinear origin of signals, both measured 3-photon fluorescence signal and third-harmonic signals are thus boosted by ~8 times in a tissue phantom. Using this technique, we further demonstrate 3PM of sulforhodamine 101 labeled vasculature 1600 µm in the mouse brain in vivo, which cannot be achieved by single-polarized soliton excitation.

14.
Neurobiol Learn Mem ; 166: 107104, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31672630

RESUMO

MsrB1 belongs to the methionine sulfoxide reductase family, it is also known as selenoprotein R for the sake of possessing a selenocysteine residue. It has been reported that MsrB1 could interact with actin, TRPM6, clusterin, and amyloid-beta in vitro. Thus, we presumed that MsrB1 may play an important role in central nervous system. To examine whether MsrB1 knockout has any effects on brain development or learning behavior, we carried out histological study on brains of MsrB1 deficient mice, and further tested spatial learning ability and long-term synaptic plasticity of these mice by using Morris water maze and electrophysiological methods. It was observed that loss of MsrB1 did not perturb the overall development of central nervous system except for the astrogliosis in hippocampus, however, it led mice to be incapable in spatial learning and severe impairments in LTP/LTD expression in CA1 of brain slices, along with the down-regulation of the synaptic proteins including PSD95, SYP, GluN2A and GluN2B, as well as the dramatic decrease of CaMKIIs phosphorylation at 286(287) compared with wild type mice. Taken together, these results suggest that MsrB1 is essential for mice spatial learning and LTP/LTD induction, and the MsrB1 related redox homeostasis may be involved in regulating the phosphorylation of CaMKIIs.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Metionina Sulfóxido Redutases/genética , Aprendizagem Espacial/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação para Baixo , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Hipocampo/patologia , Metionina Sulfóxido Redutases/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Theor Appl Genet ; 132(8): 2169-2179, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30941465

RESUMO

KEY MESSAGE: The fuzzless gene GaFzl was fine mapped to a 70-kb region containing a GIR1 gene, Cotton_A_11941, responsible for the fuzzless trait in Gossypium arboreum DPL972. Cotton fiber is the most important natural textile resource. The fuzzless mutant DPL972 (Gossypium arboreum) provides a useful germplasm resource to explore the molecular mechanism underlying fiber and fuzz initiation and development. In our previous research, the fuzzless gene in DPL972 was identified as a single dominant gene and named GaFzl. In the present study, we fine mapped this gene using F2 and BC1 populations. By combining traditional map-based cloning and next-generation sequencing, we mapped GaFzl to a 70-kb region containing seven annotated genes. RNA-Sequencing and re-sequencing analysis narrowed these candidates to two differentially expressed genes, Cotton_A_11941 and Cotton_A_11942. Sequence alignment uncovered no variation in coding or promoter regions of Cotton_A_11942 between DPL971 and DPL972, whereas two single-base mutations in the promoter region and a TTG insertion in the coding region were detected in Cotton_A_11941 in DPL972. Cotton_A_11941 encoding a homologous gene of GIR1 (GLABRA2-interacting repressor) in Arabidopsis thaliana is thus the candidate gene most likely responsible for the fuzzless trait in DPL972. Our findings should lead to a better understanding of cotton fuzz formation, thereby accelerating marker-assisted selection during cotton breeding.


Assuntos
Genes de Plantas , Gossypium/genética , Mapeamento Físico do Cromossomo , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Mutação INDEL/genética , Repetições de Microssatélites/genética , Mutação/genética , Fases de Leitura Aberta/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética
16.
Theor Appl Genet ; 132(8): 2461-2462, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187153

RESUMO

Unfortunately, Figs. 5 and 6 were interchanged in the results section. Figures should swap positions, whereas the legends should stay in the given order.

17.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248178

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the presence of extracellular senile plaques primarily composed of Aß peptides and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins. Olfactory dysfunction is an early clinical phenotype in AD and was reported to be attributable to the presence of NFTs, senile Aß plaques in the olfactory bulb (OB). Our previous research found that selenomethionine (Se-Met), a major form of selenium (Se) in organisms, effectively increased oxidation resistance as well as reduced the generation and deposition of Aß and tau hyperphosphorylation in the olfactory bulb of a triple transgenic mouse model of AD (3×Tg-AD), thereby suggesting a potential therapeutic option for AD. In this study, we further investigated changes in the transcriptome data of olfactory bulb tissues of 7-month-old triple transgenic AD (3×Tg-AD) mice treated with Se-Met (6 µg/mL) for three months. Comparison of the gene expression profile between Se-Met-treated and control mice revealed 143 differentially expressed genes (DEGs). Among these genes, 21 DEGs were upregulated and 122 downregulated. The DEGs were then annotated against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results show that upregulated genes can be roughly classified into three types. Some of them mainly regulate the regeneration of nerves, such as Fabp7, Evt5 and Gal; some are involved in improving cognition and memory, such as Areg; and some are involved in anti-oxidative stress and anti-apoptosis, such as Adcyap1 and Scg2. The downregulated genes are mainly associated with inflammation and apoptosis, such as Lrg1, Scgb3a1 and Pglyrp1. The reliability of the transcriptomic data was validated by quantitative real time polymerase chain reaction (qRT-PCR) for the selected genes. These results were in line with our previous study, which indicated therapeutic effects of Se-Met on AD mice, providing a theoretical basis for further study of the treatment of AD by Se-Met.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Selênio/farmacologia , Transcriptoma , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Camundongos , Reprodutibilidade dos Testes , Selênio/uso terapêutico
18.
J Neurosci ; 37(9): 2449-2462, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137967

RESUMO

Tau pathology was recently identified as a key driver of disease progression and an attractive therapeutic target in Alzheimer's disease (AD). Selenomethionine (Se-Met), a major bioactive form of selenium (Se) in organisms with significant antioxidant capacity, reduced the levels of total tau and hyperphosphorylated tau and ameliorated cognitive deficits in younger triple transgenic AD (3xTg-AD) mice. Whether Se-Met has a similar effect on tau pathology and the specific mechanism of action in older 3xTg-AD mice remains unknown. Autophagy is a major self-degradative process to maintain cellular homeostasis and function. Autophagic dysfunction has been implicated in the pathogenesis of multiple age-dependent diseases, including AD. Modulation of autophagy has been shown to retard the accumulation of misfolded and aggregated proteins and to delay the progression of AD. Here, we found that 3xTg-AD mice showed significant improvement in cognitive ability after a 3-month treatment with Se-Met beginning at 8 months of age. In addition to attenuating the hyperphosphorylation of tau by modulating the activity of Akt/glycogen synthase kinase-3ß and protein phosphatase 2A, Se-Met-induced reduction of tau was also mediated by an autophagy-based pathway. Specifically, Se-Met improved the initiation of autophagy via the AMP-activated protein kinase-mTOR (mammalian target of rapamycin) signaling pathway and enhanced autophagic flux to promote the clearance of tau in 3xTg-AD mice and primary 3xTg neurons. Thus, our results demonstrate for the first time that Se-Met mitigates cognitive decline by targeting both the hyperphosphorylation of tau and the autophagic clearance of tau in AD mice. These data strongly support Se-Met as a potent nutraceutical for AD therapy.SIGNIFICANCE STATEMENT Selenium has been widely recognized as a vital trace element abundant in the brain with effects of antioxidant, anticancer, and anti-inflammation. In this study, we report that selenomethionine rescues spatial learning and memory impairments in aged 3xTg-AD mice via decreasing the level of tau protein and tau hyperphosphorylation. We find that selenomethionine promotes the initiation of autophagy via the AMPK-mTOR pathway and enhances autophagic flux, thereby facilitating tau clearance in vivo and in vitro We have now identified an additional, novel mechanism by which selenomethionine improves the cognitive function of AD mice. Specifically, our data suggest the effect of selenium/selenomethionine on an autophagic pathway in Alzheimer's disease.


Assuntos
Doença de Alzheimer/complicações , Encéfalo/patologia , Transtornos Cognitivos/etiologia , Selenometionina/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/genética , Autofagia/fisiologia , Aprendizagem da Esquiva/fisiologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Macrolídeos/farmacologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Presenilina-1/genética , Tempo de Reação/fisiologia , Proteínas tau/genética
19.
Plant Biotechnol J ; 16(3): 699-713, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29087016

RESUMO

Functional genomics has transformed from futuristic concept to well-established scientific discipline during the last decade. Cotton functional genomics promise to enhance the understanding of fundamental plant biology to systematically exploit genetic resources for the improvement of cotton fibre quality and yield, as well as utilization of genetic information for germplasm improvement. However, determining the cotton gene functions is a much more challenging task, which has not progressed at a rapid pace. This article presents a comprehensive overview of the recent tools and resources available with the major advances in cotton functional genomics to develop elite cotton genotypes. This effort ultimately helps to filter a subset of genes that can be used to assemble a final list of candidate genes that could be employed in future novel cotton breeding programme. We argue that next stage of cotton functional genomics requires the draft genomes refinement, re-sequencing broad diversity panels with the development of high-throughput functional genomics tools and integrating multidisciplinary approaches in upcoming cotton improvement programmes.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Gossypium/genética , Sistemas CRISPR-Cas , Genótipo
20.
J Craniofac Surg ; 29(7): 1809-1812, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30234718

RESUMO

This study showed a retrospective analysis of the incidence and pattern of traumatic facial fractures in a pediatric and adolescent population (≤18 years old) in China. The authors retrospectively reviewed 154 children and adolescent who had traumatic facial fractures and who were admitted to our university-affiliated hospitals from 2005 to 2010. This study enrolled 109 males and 45 females aged 11.9 ±â€Š5.2 years old. The incidence peaked around the periods of 12 to 18 years in the male, ≤6 and 16 to 18 years in the female. The most common etiologies were motor vehicle collisions (MVCs) (60, 39.0%), followed by high fall (40, 26.0%), low fall (32, 20.8%). The most common fracture sites were mandible (78, 50.6%) and nose (33, 21.4%), followed by orbit (31, 20.1%). A total of 35 (22.7%) patients suffered neurological deficit. The patients in the 12 to 18 age range group accounted for the largest proportion of 54.5%. Fracture incidence showed peaks between the hours of 12:00 to 16:00 PM (33.7%), during the autumn season (30.5%) and on Friday to Sunday (50.0%). The most common etiology and fracture site were MVCs and mandible, respectively. Etiologies and patterns of traumatic facial fractures vary with age. Continued efforts toward injury prevention of traumatic facial fracture among the children and adolescents are warranted.


Assuntos
Ossos Faciais/lesões , Traumatismos Faciais/epidemiologia , Fraturas Ósseas/epidemiologia , Estações do Ano , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Ossos Faciais/diagnóstico por imagem , Traumatismos Faciais/diagnóstico , Feminino , Fraturas Ósseas/diagnóstico , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Lactente , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa